-
Notifications
You must be signed in to change notification settings - Fork 34
sum2_subset
matrixStats: Benchmark report
This report benchmark the performance of sum2() on subsetted computation.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240858 173.1 5709258 305.0 5709258 305.0
Vcells 12921254 98.6 28839795 220.1 87357391 666.5
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]),
+ unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 0.002190 | 0.0022480 | 0.0023238 | 0.002268 | 0.0023555 | 0.002870 |
2 | sum2(x, idxs) | 0.002872 | 0.0029195 | 0.0030163 | 0.002966 | 0.0031015 | 0.003742 |
3 | sum2(x[idxs]) | 0.003755 | 0.0038740 | 0.0053282 | 0.003972 | 0.0040930 | 0.136824 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum2(x, idxs) | 1.311416 | 1.29871 | 1.298030 | 1.307760 | 1.316706 | 1.303833 |
3 | sum2(x[idxs]) | 1.714612 | 1.72331 | 2.292913 | 1.751323 | 1.737635 | 47.673868 |
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3238800 173 5709258 305.0 5709258 305.0
Vcells 11791872 90 28839795 220.1 87357391 666.5
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]),
+ unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 0.008838 | 0.008996 | 0.0091332 | 0.0090765 | 0.009198 | 0.011473 |
2 | sum2(x, idxs) | 0.014471 | 0.014606 | 0.0148497 | 0.0146760 | 0.014792 | 0.021946 |
3 | sum2(x[idxs]) | 0.020736 | 0.021109 | 0.0219148 | 0.0212720 | 0.021467 | 0.064195 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum2(x, idxs) | 1.637361 | 1.623611 | 1.625896 | 1.616923 | 1.608176 | 1.912839 |
3 | sum2(x[idxs]) | 2.346232 | 2.346487 | 2.399457 | 2.343635 | 2.333877 | 5.595311 |
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3238872 173.0 5709258 305.0 5709258 305.0
Vcells 11855432 90.5 28839795 220.1 87357391 666.5
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]),
+ unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 0.074186 | 0.074325 | 0.0746227 | 0.0744155 | 0.0746215 | 0.077288 |
2 | sum2(x, idxs) | 0.134825 | 0.135009 | 0.1354628 | 0.1351140 | 0.1353220 | 0.143342 |
3 | sum2(x[idxs]) | 0.221791 | 0.222845 | 0.2255470 | 0.2233340 | 0.2245325 | 0.349794 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum2(x, idxs) | 1.817391 | 1.816468 | 1.815302 | 1.815670 | 1.813445 | 1.854648 |
3 | sum2(x[idxs]) | 2.989661 | 2.998251 | 3.022497 | 3.001176 | 3.008952 | 4.525851 |
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3238944 173.0 5709258 305.0 5709258 305.0
Vcells 12485481 95.3 28839795 220.1 87357391 666.5
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]),
+ unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 0.732001 | 0.814316 | 0.8467126 | 0.8446555 | 0.8714105 | 1.007080 |
2 | sum2(x, idxs) | 1.769217 | 2.101954 | 2.2156949 | 2.2194915 | 2.3216820 | 3.110682 |
3 | sum2(x[idxs]) | 2.809793 | 4.210238 | 4.6073393 | 4.3763790 | 4.6239305 | 16.027118 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | sum2(x, idxs) | 2.41696 | 2.581250 | 2.616821 | 2.627688 | 2.66428 | 3.088813 |
3 | sum2(x[idxs]) | 3.83851 | 5.170275 | 5.441444 | 5.181259 | 5.30626 | 15.914444 |
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3239016 173.0 5709258 305.0 5709258 305.0
Vcells 18785529 143.4 34687754 264.7 87357391 666.5
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]),
+ unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 9.60869 | 12.10403 | 13.99947 | 12.71874 | 16.89679 | 17.78463 |
2 | sum2(x, idxs) | 86.94654 | 96.47109 | 99.66171 | 98.27021 | 103.18522 | 109.55295 |
3 | sum2(x[idxs]) | 129.36483 | 136.79755 | 147.68536 | 139.58785 | 148.21950 | 409.31043 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum2(x, idxs) | 9.048741 | 7.970161 | 7.118964 | 7.726411 | 6.106793 | 6.159981 |
3 | sum2(x[idxs]) | 13.463316 | 11.301816 | 10.549356 | 10.974975 | 8.772049 | 23.014846 |
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on integer+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3239088 173.0 5709258 305.0 5709258 305.0
Vcells 17342682 132.4 41705304 318.2 87357391 666.5
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]),
+ unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 0.002153 | 0.0022240 | 0.0023368 | 0.002276 | 0.0024410 | 0.002854 |
2 | sum2(x, idxs) | 0.002838 | 0.0028990 | 0.0029866 | 0.002927 | 0.0030115 | 0.004507 |
3 | sum2(x[idxs]) | 0.003739 | 0.0039885 | 0.0043585 | 0.004075 | 0.0042040 | 0.026651 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum2(x, idxs) | 1.318161 | 1.303507 | 1.278056 | 1.286028 | 1.233716 | 1.579187 |
3 | sum2(x[idxs]) | 1.736646 | 1.793390 | 1.865153 | 1.790422 | 1.722245 | 9.338122 |
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3239160 173.0 5709258 305.0 5709258 305.0
Vcells 17352179 132.4 41705304 318.2 87357391 666.5
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]),
+ unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 0.008890 | 0.009032 | 0.0091546 | 0.0091230 | 0.009226 | 0.011079 |
2 | sum2(x, idxs) | 0.014576 | 0.014711 | 0.0148620 | 0.0147845 | 0.014884 | 0.017632 |
3 | sum2(x[idxs]) | 0.022720 | 0.023244 | 0.0240554 | 0.0235210 | 0.023820 | 0.058946 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum2(x, idxs) | 1.639595 | 1.628764 | 1.623442 | 1.620574 | 1.613267 | 1.591479 |
3 | sum2(x[idxs]) | 2.555680 | 2.573516 | 2.627679 | 2.578209 | 2.581834 | 5.320516 |
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3239232 173.0 5709258 305.0 5709258 305.0
Vcells 17447046 133.2 41705304 318.2 87357391 666.5
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]),
+ unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 0.074257 | 0.0744585 | 0.0752039 | 0.0747345 | 0.0753900 | 0.082771 |
2 | sum2(x, idxs) | 0.146503 | 0.1467050 | 0.1472006 | 0.1468430 | 0.1469555 | 0.163726 |
3 | sum2(x[idxs]) | 0.257554 | 0.2612740 | 0.3219299 | 0.2669460 | 0.3883100 | 0.453088 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum2(x, idxs) | 1.972918 | 1.970292 | 1.957354 | 1.964862 | 1.949270 | 1.978060 |
3 | sum2(x[idxs]) | 3.468414 | 3.508988 | 4.280762 | 3.571925 | 5.150683 | 5.473994 |
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3239304 173.0 5709258 305.0 5709258 305.0
Vcells 18392476 140.4 41705304 318.2 87357391 666.5
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]),
+ unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 0.796457 | 1.240280 | 1.258551 | 1.257955 | 1.290671 | 1.392572 |
2 | sum2(x, idxs) | 4.741483 | 5.288318 | 5.366747 | 5.380356 | 5.445163 | 5.830528 |
3 | sum2(x[idxs]) | 5.928098 | 9.805182 | 10.399687 | 9.983529 | 10.196608 | 26.636727 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum2(x, idxs) | 5.953219 | 4.263808 | 4.264226 | 4.277067 | 4.218864 | 4.186877 |
3 | sum2(x[idxs]) | 7.443086 | 7.905616 | 8.263221 | 7.936320 | 7.900241 | 19.127720 |
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3239376 173.1 5709258 305.0 5709258 305.0
Vcells 27842524 212.5 50126364 382.5 87357391 666.5
> stats <- microbenchmark(sum2_x_S = sum2(x_S), `sum2(x, idxs)` = sum2(x, idxs = idxs), `sum2(x[idxs])` = sum2(x[idxs]),
+ unit = "ms")
Table: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 9.611336 | 12.09921 | 15.44088 | 13.55772 | 20.02822 | 22.08697 |
2 | sum2(x, idxs) | 92.115922 | 140.56294 | 149.20767 | 147.07898 | 159.33201 | 191.04255 |
3 | sum2(x[idxs]) | 133.500922 | 169.75578 | 184.78027 | 180.82242 | 186.80018 | 460.96444 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2_x_S | 1.000000 | 1.00000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | sum2(x, idxs) | 9.584091 | 11.61753 | 9.663161 | 10.84835 | 7.955376 | 8.649558 |
3 | sum2(x[idxs]) | 13.889944 | 14.03032 | 11.966955 | 13.33722 | 9.326849 | 20.870423 |
Figure: Benchmarking of sum2_x_S(), sum2(x, idxs)() and sum2(x[idxs])() on double+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 1.31 mins.
To reproduce this report, do:
html <- matrixStats:::benchmark('sum2_subset')
Copyright Dongcan Jiang. Last updated on 2019-09-10 21:10:42 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>