-
Notifications
You must be signed in to change notification settings - Fork 34
colRowRanks
matrixStats: Benchmark report
This report benchmark the performance of colRanks() and rowRanks() against alternative methods.
- apply() + rank()
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3193853 170.6 5709258 305.0 5709258 305.0
Vcells 6468219 49.4 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192173 170.5 5709258 305.0 5709258 305.0
Vcells 6463307 49.4 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
Table: Benchmarking of colRanks() and apply+rank() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 0.009151 | 0.0102300 | 0.0131554 | 0.0127835 | 0.014636 | 0.045409 |
2 | apply+rank | 0.156443 | 0.1608635 | 0.1730241 | 0.1640870 | 0.169303 | 0.321996 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.000000 |
2 | apply+rank | 17.09573 | 15.72468 | 13.15227 | 12.83584 | 11.56757 | 7.091017 |
Table: Benchmarking of rowRanks() and apply+rank() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 0.003241 | 0.0039220 | 0.0051267 | 0.0053805 | 0.0057575 | 0.017792 |
2 | apply+rank | 0.120576 | 0.1234595 | 0.1295284 | 0.1247940 | 0.1274035 | 0.233164 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+rank | 37.20333 | 31.47871 | 25.26555 | 23.19376 | 22.12827 | 13.10499 |
Figure: Benchmarking of colRanks() and apply+rank() on integer+10x10 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks() and rowRanks() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 3.241 | 3.922 | 5.12668 | 5.3805 | 5.7575 | 17.792 |
1 | colRanks | 9.151 | 10.230 | 13.15545 | 12.7835 | 14.6360 | 45.409 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colRanks | 2.823511 | 2.608363 | 2.566076 | 2.375894 | 2.542076 | 2.552214 |
Figure: Benchmarking of colRanks() and rowRanks() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3190729 170.5 5709258 305.0 5709258 305.0
Vcells 6079813 46.4 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3190720 170.5 5709258 305.0 5709258 305.0
Vcells 6084851 46.5 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
Table: Benchmarking of colRanks() and apply+rank() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 0.312976 | 0.3156005 | 0.3214385 | 0.3220275 | 0.3247015 | 0.384026 |
2 | apply+rank | 1.651695 | 1.6822950 | 1.6998098 | 1.6904005 | 1.7038450 | 1.947765 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | apply+rank | 5.277386 | 5.330457 | 5.288133 | 5.249243 | 5.24742 | 5.071961 |
Table: Benchmarking of rowRanks() and apply+rank() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 0.297921 | 0.299919 | 0.3046728 | 0.3034425 | 0.3086655 | 0.325643 |
2 | apply+rank | 1.655421 | 1.676748 | 1.6957418 | 1.6888720 | 1.7049320 | 1.990512 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+rank | 5.556577 | 5.590669 | 5.565779 | 5.565707 | 5.523559 | 6.112559 |
Figure: Benchmarking of colRanks() and apply+rank() on integer+100x100 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks() and rowRanks() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 297.921 | 299.9190 | 304.6728 | 303.4425 | 308.6655 | 325.643 |
1 | colRanks | 312.976 | 315.6005 | 321.4385 | 322.0275 | 324.7015 | 384.026 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colRanks | 1.050534 | 1.052286 | 1.055028 | 1.061247 | 1.051953 | 1.179285 |
Figure: Benchmarking of colRanks() and rowRanks() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3191456 170.5 5709258 305.0 5709258 305.0
Vcells 6083319 46.5 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3191450 170.5 5709258 305.0 5709258 305.0
Vcells 6088362 46.5 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
Table: Benchmarking of colRanks() and apply+rank() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 0.385546 | 0.390501 | 0.3954847 | 0.3957785 | 0.3983605 | 0.451537 |
2 | apply+rank | 1.028308 | 1.037556 | 1.0488994 | 1.0498740 | 1.0549680 | 1.132388 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+rank | 2.667147 | 2.656988 | 2.652187 | 2.652681 | 2.648275 | 2.507852 |
Table: Benchmarking of rowRanks() and apply+rank() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 0.375090 | 0.3784755 | 0.3875547 | 0.383650 | 0.385605 | 0.531404 |
2 | apply+rank | 1.028457 | 1.0436115 | 1.0878877 | 1.052121 | 1.065198 | 1.618831 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+rank | 2.741894 | 2.757408 | 2.807056 | 2.742399 | 2.762406 | 3.046328 |
Figure: Benchmarking of colRanks() and apply+rank() on integer+1000x10 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks() and rowRanks() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 375.090 | 378.4755 | 387.5547 | 383.6500 | 385.6050 | 531.404 |
1 | colRanks | 385.546 | 390.5010 | 395.4847 | 395.7785 | 398.3605 | 451.537 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colRanks | 1.027876 | 1.031773 | 1.020462 | 1.031613 | 1.033079 | 0.8497057 |
Figure: Benchmarking of colRanks() and rowRanks() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3191647 170.5 5709258 305.0 5709258 305.0
Vcells 6084008 46.5 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3191638 170.5 5709258 305.0 5709258 305.0
Vcells 6089046 46.5 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
Table: Benchmarking of colRanks() and apply+rank() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 0.203743 | 0.2094645 | 0.2294692 | 0.2264965 | 0.2401895 | 0.340512 |
2 | apply+rank | 10.201566 | 10.4951780 | 11.3892725 | 10.6452085 | 11.2344635 | 26.840616 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+rank | 50.07076 | 50.10481 | 49.63312 | 46.99944 | 46.77333 | 78.82429 |
Table: Benchmarking of rowRanks() and apply+rank() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 0.185777 | 0.190884 | 0.202331 | 0.200224 | 0.210046 | 0.257102 |
2 | apply+rank | 10.248381 | 10.555267 | 11.289273 | 10.768982 | 11.236743 | 18.301513 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+rank | 55.16496 | 55.29676 | 55.79606 | 53.78467 | 53.49658 | 71.18386 |
Figure: Benchmarking of colRanks() and apply+rank() on integer+10x1000 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks() and rowRanks() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 185.777 | 190.8840 | 202.3310 | 200.2240 | 210.0460 | 257.102 |
1 | colRanks | 203.743 | 209.4645 | 229.4692 | 226.4965 | 240.1895 | 340.512 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colRanks | 1.096707 | 1.097339 | 1.134128 | 1.131215 | 1.143509 | 1.324424 |
Figure: Benchmarking of colRanks() and rowRanks() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3191828 170.5 5709258 305.0 5709258 305.0
Vcells 6084494 46.5 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3191822 170.5 5709258 305.0 5709258 305.0
Vcells 6134537 46.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
Table: Benchmarking of colRanks() and apply+rank() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 3.077105 | 3.118673 | 3.160381 | 3.147074 | 3.209983 | 3.336213 |
2 | apply+rank | 16.456213 | 16.686357 | 17.977450 | 16.921699 | 17.188270 | 33.735491 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.00000 |
2 | apply+rank | 5.347953 | 5.350468 | 5.688381 | 5.376962 | 5.35463 | 10.11191 |
Table: Benchmarking of rowRanks() and apply+rank() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 2.974055 | 3.029072 | 3.106812 | 3.067885 | 3.121558 | 3.751149 |
2 | apply+rank | 16.474844 | 16.808226 | 18.051511 | 17.006084 | 17.240157 | 33.977104 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | apply+rank | 5.539522 | 5.548969 | 5.810301 | 5.54326 | 5.522932 | 9.057786 |
Figure: Benchmarking of colRanks() and apply+rank() on integer+100x1000 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks() and rowRanks() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 2.974055 | 3.029072 | 3.106812 | 3.067885 | 3.121558 | 3.751149 |
1 | colRanks | 3.077105 | 3.118673 | 3.160381 | 3.147074 | 3.209983 | 3.336213 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 1.00000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colRanks | 1.03465 | 1.02958 | 1.017243 | 1.025812 | 1.028327 | 0.8893843 |
Figure: Benchmarking of colRanks() and rowRanks() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192020 170.5 5709258 305.0 5709258 305.0
Vcells 6085062 46.5 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192014 170.5 5709258 305.0 5709258 305.0
Vcells 6135105 46.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
Table: Benchmarking of colRanks() and apply+rank() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 3.823106 | 3.841194 | 4.094267 | 3.853652 | 3.931769 | 12.78651 |
2 | apply+rank | 9.965379 | 10.026457 | 10.396685 | 10.086535 | 10.236059 | 18.43050 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+rank | 2.606619 | 2.610245 | 2.539327 | 2.617396 | 2.603423 | 1.441402 |
Table: Benchmarking of rowRanks() and apply+rank() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 3.732511 | 3.744989 | 3.850598 | 3.753887 | 3.818224 | 5.680193 |
2 | apply+rank | 9.978090 | 10.038864 | 10.717244 | 10.103415 | 10.296952 | 19.265572 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+rank | 2.673291 | 2.680612 | 2.783268 | 2.691455 | 2.696791 | 3.391711 |
Figure: Benchmarking of colRanks() and apply+rank() on integer+1000x100 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks() and rowRanks() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 3.732511 | 3.744989 | 3.850598 | 3.753887 | 3.818224 | 5.680193 |
1 | colRanks | 3.823106 | 3.841194 | 4.094267 | 3.853652 | 3.931769 | 12.786509 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colRanks | 1.024272 | 1.025689 | 1.063281 | 1.026577 | 1.029738 | 2.251069 |
Figure: Benchmarking of colRanks() and rowRanks() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192231 170.5 5709258 305.0 5709258 305.0
Vcells 6201433 47.4 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192213 170.5 5709258 305.0 5709258 305.0
Vcells 6201556 47.4 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
Table: Benchmarking of colRanks() and apply+rank() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 0.006912 | 0.0075880 | 0.0093864 | 0.0084405 | 0.010515 | 0.036475 |
2 | apply+rank | 0.122983 | 0.1254835 | 0.1282255 | 0.1265915 | 0.128378 | 0.239726 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 1.00000 | 1.0000 | 1.00000 | 1.0000 | 1.00000 | 1.000000 |
2 | apply+rank | 17.79268 | 16.5371 | 13.66078 | 14.9981 | 12.20903 | 6.572337 |
Table: Benchmarking of rowRanks() and apply+rank() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 0.002952 | 0.003937 | 0.0048741 | 0.0050595 | 0.0053925 | 0.019921 |
2 | apply+rank | 0.119666 | 0.122002 | 0.1256963 | 0.1242670 | 0.1259480 | 0.256685 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+rank | 40.53726 | 30.98857 | 25.78873 | 24.56112 | 23.35614 | 12.88515 |
Figure: Benchmarking of colRanks() and apply+rank() on double+10x10 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks() and rowRanks() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 2.952 | 3.937 | 4.87408 | 5.0595 | 5.3925 | 19.921 |
1 | colRanks | 6.912 | 7.588 | 9.38640 | 8.4405 | 10.5150 | 36.475 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colRanks | 2.341463 | 1.927356 | 1.925779 | 1.668248 | 1.949931 | 1.830982 |
Figure: Benchmarking of colRanks() and rowRanks() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192411 170.5 5709258 305.0 5709258 305.0
Vcells 6201545 47.4 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192402 170.5 5709258 305.0 5709258 305.0
Vcells 6211583 47.4 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
Table: Benchmarking of colRanks() and apply+rank() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 0.327309 | 0.3451305 | 0.3493351 | 0.3483775 | 0.354750 | 0.399367 |
2 | apply+rank | 1.703618 | 1.7740350 | 1.7936778 | 1.7950170 | 1.809705 | 1.966386 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+rank | 5.204923 | 5.140186 | 5.134548 | 5.152506 | 5.101355 | 4.923757 |
Table: Benchmarking of rowRanks() and apply+rank() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 0.318951 | 0.336027 | 0.3383823 | 0.339328 | 0.3449145 | 0.349451 |
2 | apply+rank | 1.670506 | 1.715305 | 1.7441626 | 1.744661 | 1.7595735 | 2.233143 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 1.0000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+rank | 5.2375 | 5.104666 | 5.154414 | 5.141518 | 5.101477 | 6.390432 |
Figure: Benchmarking of colRanks() and apply+rank() on double+100x100 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks() and rowRanks() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 318.951 | 336.0270 | 338.3823 | 339.3280 | 344.9145 | 349.451 |
1 | colRanks | 327.309 | 345.1305 | 349.3351 | 348.3775 | 354.7500 | 399.367 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colRanks | 1.026205 | 1.027092 | 1.032368 | 1.026669 | 1.028516 | 1.142841 |
Figure: Benchmarking of colRanks() and rowRanks() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192598 170.6 5709258 305.0 5709258 305.0
Vcells 6202429 47.4 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192592 170.6 5709258 305.0 5709258 305.0
Vcells 6212472 47.4 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
Table: Benchmarking of colRanks() and apply+rank() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 0.449337 | 0.4574915 | 0.4679399 | 0.467756 | 0.4776545 | 0.507614 |
2 | apply+rank | 1.039772 | 1.0547325 | 1.0687176 | 1.066174 | 1.0822980 | 1.123068 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+rank | 2.314014 | 2.305469 | 2.283878 | 2.279338 | 2.265859 | 2.212445 |
Table: Benchmarking of rowRanks() and apply+rank() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 0.445564 | 0.453902 | 0.4600217 | 0.4593425 | 0.4660655 | 0.489765 |
2 | apply+rank | 0.988491 | 1.008866 | 1.0186755 | 1.0154935 | 1.0262895 | 1.101602 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+rank | 2.218516 | 2.222652 | 2.214407 | 2.210755 | 2.202028 | 2.249246 |
Figure: Benchmarking of colRanks() and apply+rank() on double+1000x10 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks() and rowRanks() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 445.564 | 453.9020 | 460.0217 | 459.3425 | 466.0655 | 489.765 |
1 | colRanks | 449.337 | 457.4915 | 467.9399 | 467.7560 | 477.6545 | 507.614 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colRanks | 1.008468 | 1.007908 | 1.017213 | 1.018316 | 1.024866 | 1.036444 |
Figure: Benchmarking of colRanks() and rowRanks() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192789 170.6 5709258 305.0 5709258 305.0
Vcells 6203467 47.4 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192780 170.6 5709258 305.0 5709258 305.0
Vcells 6213505 47.5 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
Table: Benchmarking of colRanks() and apply+rank() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 0.2075 | 0.218528 | 0.2355714 | 0.2361095 | 0.2485725 | 0.296547 |
2 | apply+rank | 10.3790 | 10.911312 | 11.7866420 | 11.3245100 | 11.6416920 | 28.030995 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+rank | 50.01928 | 49.93096 | 50.03427 | 47.96296 | 46.83419 | 94.52463 |
Table: Benchmarking of rowRanks() and apply+rank() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 0.194874 | 0.2075985 | 0.2192731 | 0.2144825 | 0.2250525 | 0.326257 |
2 | apply+rank | 10.172275 | 10.9990000 | 12.0164536 | 11.4397480 | 11.9099350 | 19.626885 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 1.00000 | 1.00000 | 1.0000 | 1.00000 | 1.0000 | 1.00000 |
2 | apply+rank | 52.19924 | 52.98208 | 54.8013 | 53.33651 | 52.9207 | 60.15774 |
Figure: Benchmarking of colRanks() and apply+rank() on double+10x1000 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks() and rowRanks() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 194.874 | 207.5985 | 219.2731 | 214.4825 | 225.0525 | 326.257 |
1 | colRanks | 207.500 | 218.5280 | 235.5714 | 236.1095 | 248.5725 | 296.547 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colRanks | 1.064791 | 1.052647 | 1.074329 | 1.100833 | 1.104509 | 0.9089368 |
Figure: Benchmarking of colRanks() and rowRanks() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192970 170.6 5709258 305.0 5709258 305.0
Vcells 6203583 47.4 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3192964 170.6 5709258 305.0 5709258 305.0
Vcells 6303626 48.1 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
Table: Benchmarking of colRanks() and apply+rank() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 3.214433 | 3.420603 | 3.463363 | 3.465956 | 3.523589 | 3.664443 |
2 | apply+rank | 17.136738 | 17.997701 | 19.274386 | 18.223185 | 18.519274 | 36.069326 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+rank | 5.331185 | 5.261558 | 5.565223 | 5.257765 | 5.255798 | 9.843058 |
Table: Benchmarking of rowRanks() and apply+rank() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 3.169005 | 3.355858 | 3.478543 | 3.442334 | 3.512765 | 5.077613 |
2 | apply+rank | 16.795541 | 17.470779 | 21.270506 | 17.734878 | 18.130592 | 277.089230 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | apply+rank | 5.299942 | 5.206054 | 6.114774 | 5.151993 | 5.161345 | 54.57077 |
Figure: Benchmarking of colRanks() and apply+rank() on double+100x1000 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks() and rowRanks() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 3.169005 | 3.355858 | 3.478543 | 3.442334 | 3.512765 | 5.077613 |
1 | colRanks | 3.214433 | 3.420603 | 3.463363 | 3.465956 | 3.523589 | 3.664443 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colRanks | 1.014335 | 1.019293 | 0.995636 | 1.006862 | 1.003081 | 0.7216862 |
Figure: Benchmarking of colRanks() and rowRanks() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3193162 170.6 5709258 305.0 5709258 305.0
Vcells 6204802 47.4 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks = colRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 2L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3193156 170.6 5709258 305.0 5709258 305.0
Vcells 6304845 48.2 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks = rowRanks(X, na.rm = FALSE), `apply+rank` = apply(X, MARGIN = 1L,
+ FUN = rank, na.last = "keep", ties.method = "max"), unit = "ms")
Table: Benchmarking of colRanks() and apply+rank() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 4.456471 | 4.632466 | 4.815742 | 4.727482 | 4.752999 | 13.35861 |
2 | apply+rank | 9.657767 | 10.056055 | 10.502975 | 10.114044 | 10.181708 | 19.44552 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+rank | 2.167133 | 2.170778 | 2.180967 | 2.139414 | 2.142165 | 1.455655 |
Table: Benchmarking of rowRanks() and apply+rank() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 4.417688 | 4.538609 | 4.658729 | 4.651197 | 4.68947 | 5.660156 |
2 | apply+rank | 9.713633 | 10.009710 | 10.574110 | 10.146669 | 10.19068 | 19.566589 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+rank | 2.198805 | 2.205457 | 2.269742 | 2.181518 | 2.173098 | 3.456899 |
Figure: Benchmarking of colRanks() and apply+rank() on double+1000x100 data as well as rowRanks() and apply+rank() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks() and rowRanks() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 4.417688 | 4.538609 | 4.658729 | 4.651197 | 4.689470 | 5.660156 |
1 | colRanks | 4.456471 | 4.632466 | 4.815742 | 4.727482 | 4.752999 | 13.358608 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colRanks | 1.008779 | 1.020679 | 1.033703 | 1.016401 | 1.013547 | 2.360113 |
Figure: Benchmarking of colRanks() and rowRanks() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 43.37 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRanks')
Copyright Henrik Bengtsson. Last updated on 2019-09-10 20:52:42 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>