-
Notifications
You must be signed in to change notification settings - Fork 34
colRowCounts_subset
matrixStats: Benchmark report
This report benchmark the performance of colCounts() and rowCounts() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on logical+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.002247 | 0.002308 | 0.0043100 | 0.0023660 | 0.002528 | 0.190819 |
2 | colCounts(X, rows, cols) | 0.002479 | 0.002549 | 0.0026707 | 0.0026115 | 0.002716 | 0.004846 |
3 | colCounts(X[rows, cols]) | 0.003019 | 0.003260 | 0.0034636 | 0.0033335 | 0.003463 | 0.010424 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colCounts(X, rows, cols) | 1.103249 | 1.104419 | 0.6196561 | 1.103762 | 1.074367 | 0.0253958 |
3 | colCounts(X[rows, cols]) | 1.343569 | 1.412478 | 0.8036158 | 1.408918 | 1.369858 | 0.0546277 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on logical+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.002144 | 0.002213 | 0.0023419 | 0.0022610 | 0.0024285 | 0.004592 |
2 | rowCounts(X, cols, rows) | 0.002339 | 0.002460 | 0.0045045 | 0.0025515 | 0.0026755 | 0.194337 |
3 | rowCounts(X[cols, rows]) | 0.002803 | 0.002999 | 0.0032171 | 0.0030970 | 0.0032425 | 0.007988 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts(X, cols, rows) | 1.090952 | 1.111613 | 1.923423 | 1.128483 | 1.101709 | 42.320775 |
3 | rowCounts(X[cols, rows]) | 1.307369 | 1.355174 | 1.373686 | 1.369748 | 1.335186 | 1.739547 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on logical+10x10 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 2.144 | 2.213 | 2.34194 | 2.261 | 2.4285 | 4.592 |
1 | colCounts_X_S | 2.247 | 2.308 | 4.31002 | 2.366 | 2.5280 | 190.819 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.00000 |
1 | colCounts_X_S | 1.048041 | 1.042928 | 1.840363 | 1.04644 | 1.040972 | 41.55466 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on logical+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.014956 | 0.0159250 | 0.0187822 | 0.0163800 | 0.0170005 | 0.065345 |
2 | colCounts(X, rows, cols) | 0.026573 | 0.0277135 | 0.0301256 | 0.0280595 | 0.0286710 | 0.064991 |
3 | colCounts(X[rows, cols]) | 0.030900 | 0.0321415 | 0.0361838 | 0.0325290 | 0.0334035 | 0.094142 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colCounts(X, rows, cols) | 1.776745 | 1.740251 | 1.603940 | 1.713034 | 1.686480 | 0.9945826 |
3 | colCounts(X[rows, cols]) | 2.066060 | 2.018305 | 1.926489 | 1.985897 | 1.964854 | 1.4406917 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on logical+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.018748 | 0.0199265 | 0.0204167 | 0.0202775 | 0.0208110 | 0.024813 |
2 | rowCounts(X, cols, rows) | 0.021332 | 0.0246285 | 0.0255354 | 0.0257890 | 0.0265035 | 0.029800 |
3 | rowCounts(X[cols, rows]) | 0.026049 | 0.0273755 | 0.0285468 | 0.0279035 | 0.0284620 | 0.085041 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts(X, cols, rows) | 1.137828 | 1.235967 | 1.250716 | 1.271804 | 1.273533 | 1.200983 |
3 | rowCounts(X[cols, rows]) | 1.389428 | 1.373824 | 1.398210 | 1.376082 | 1.367642 | 3.427276 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on logical+100x100 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 14.956 | 15.9250 | 18.78225 | 16.3800 | 17.0005 | 65.345 |
2 | rowCounts_X_S | 18.748 | 19.9265 | 20.41665 | 20.2775 | 20.8110 | 24.813 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts_X_S | 1.253544 | 1.251272 | 1.087018 | 1.237943 | 1.224141 | 0.379723 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on logical+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.014952 | 0.0155295 | 0.0159807 | 0.0159125 | 0.0162535 | 0.023835 |
2 | colCounts(X, rows, cols) | 0.026870 | 0.0275695 | 0.0282494 | 0.0278060 | 0.0281060 | 0.066585 |
3 | colCounts(X[rows, cols]) | 0.030305 | 0.0312165 | 0.0318215 | 0.0315610 | 0.0319885 | 0.045172 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colCounts(X, rows, cols) | 1.797084 | 1.775299 | 1.767713 | 1.747431 | 1.729228 | 2.793581 |
3 | colCounts(X[rows, cols]) | 2.026819 | 2.010142 | 1.991242 | 1.983409 | 1.968099 | 1.895196 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on logical+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.018717 | 0.0200250 | 0.0210584 | 0.0206775 | 0.0211855 | 0.063188 |
2 | rowCounts(X, cols, rows) | 0.023208 | 0.0262735 | 0.0274096 | 0.0273810 | 0.0283210 | 0.043252 |
3 | rowCounts(X[cols, rows]) | 0.028331 | 0.0292615 | 0.0301990 | 0.0298515 | 0.0304655 | 0.043113 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowCounts(X, cols, rows) | 1.239942 | 1.312035 | 1.301603 | 1.324193 | 1.336811 | 0.6844971 |
3 | rowCounts(X[cols, rows]) | 1.513651 | 1.461248 | 1.434062 | 1.443671 | 1.438035 | 0.6822973 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on logical+1000x10 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 14.952 | 15.5295 | 15.98073 | 15.9125 | 16.2535 | 23.835 |
2 | rowCounts_X_S | 18.717 | 20.0250 | 21.05837 | 20.6775 | 21.1855 | 63.188 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | rowCounts_X_S | 1.251806 | 1.289481 | 1.317735 | 1.29945 | 1.303442 | 2.651059 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on logical+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.016053 | 0.0173490 | 0.0181913 | 0.0180045 | 0.0187555 | 0.026057 |
3 | colCounts(X[rows, cols]) | 0.025500 | 0.0266630 | 0.0275438 | 0.0272840 | 0.0281125 | 0.037193 |
2 | colCounts(X, rows, cols) | 0.031713 | 0.0331705 | 0.0340044 | 0.0336375 | 0.0341080 | 0.071593 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | colCounts(X[rows, cols]) | 1.588488 | 1.536861 | 1.514123 | 1.515399 | 1.498894 | 1.427371 |
2 | colCounts(X, rows, cols) | 1.975519 | 1.911955 | 1.869269 | 1.868283 | 1.818560 | 2.747553 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on logical+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.018273 | 0.0194185 | 0.0206247 | 0.0202325 | 0.0207075 | 0.062510 |
2 | rowCounts(X, cols, rows) | 0.022733 | 0.0253140 | 0.0264121 | 0.0265370 | 0.0277050 | 0.030938 |
3 | rowCounts(X[cols, rows]) | 0.026197 | 0.0276300 | 0.0285089 | 0.0282855 | 0.0287930 | 0.045801 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowCounts(X, cols, rows) | 1.244076 | 1.303602 | 1.280602 | 1.311603 | 1.337921 | 0.4949288 |
3 | rowCounts(X[cols, rows]) | 1.433645 | 1.422870 | 1.382266 | 1.398023 | 1.390462 | 0.7326988 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on logical+10x1000 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 16.053 | 17.3490 | 18.19127 | 18.0045 | 18.7555 | 26.057 |
2 | rowCounts_X_S | 18.273 | 19.4185 | 20.62474 | 20.2325 | 20.7075 | 62.510 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts_X_S | 1.138292 | 1.119286 | 1.133771 | 1.123747 | 1.104076 | 2.398972 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on logical+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.177938 | 0.182584 | 0.1854838 | 0.1868145 | 0.1888510 | 0.200763 |
2 | colCounts(X, rows, cols) | 0.253978 | 0.257596 | 0.2662256 | 0.2648400 | 0.2708645 | 0.356632 |
3 | colCounts(X[rows, cols]) | 0.324466 | 0.328664 | 0.3373513 | 0.3360885 | 0.3437515 | 0.365653 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colCounts(X, rows, cols) | 1.427340 | 1.410836 | 1.435304 | 1.417663 | 1.434276 | 1.776383 |
3 | colCounts(X[rows, cols]) | 1.823478 | 1.800070 | 1.818764 | 1.799049 | 1.820226 | 1.821317 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on logical+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.181591 | 0.1961155 | 0.2004233 | 0.2013035 | 0.2037485 | 0.250633 |
2 | rowCounts(X, cols, rows) | 0.239456 | 0.2551820 | 0.2620845 | 0.2624635 | 0.2682000 | 0.301425 |
3 | rowCounts(X[cols, rows]) | 0.242631 | 0.2628810 | 0.2689877 | 0.2650875 | 0.2720390 | 0.329904 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts(X, cols, rows) | 1.318656 | 1.301182 | 1.307655 | 1.303820 | 1.316329 | 1.202655 |
3 | rowCounts(X[cols, rows]) | 1.336140 | 1.340440 | 1.342098 | 1.316855 | 1.335171 | 1.316283 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on logical+100x1000 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 177.938 | 182.5840 | 185.4838 | 186.8145 | 188.8510 | 200.763 |
2 | rowCounts_X_S | 181.591 | 196.1155 | 200.4233 | 201.3035 | 203.7485 | 250.633 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts_X_S | 1.02053 | 1.074111 | 1.080543 | 1.077558 | 1.078885 | 1.248402 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on logical+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.172271 | 0.1736790 | 0.1772729 | 0.1766780 | 0.1788080 | 0.195033 |
3 | colCounts(X[rows, cols]) | 0.235371 | 0.2379725 | 0.2439298 | 0.2429765 | 0.2451605 | 0.321591 |
2 | colCounts(X, rows, cols) | 0.243631 | 0.2462140 | 0.2507330 | 0.2492495 | 0.2536165 | 0.269588 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | colCounts(X[rows, cols]) | 1.366283 | 1.370186 | 1.376013 | 1.375250 | 1.371082 | 1.648906 |
2 | colCounts(X, rows, cols) | 1.414231 | 1.417638 | 1.414390 | 1.410756 | 1.418373 | 1.382269 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on logical+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.189107 | 0.1913065 | 0.2006118 | 0.200190 | 0.2016930 | 0.356354 |
2 | rowCounts(X, cols, rows) | 0.252300 | 0.2594665 | 0.2675861 | 0.266562 | 0.2698795 | 0.478265 |
3 | rowCounts(X[cols, rows]) | 0.254775 | 0.2587900 | 0.2753844 | 0.269315 | 0.2737910 | 0.705173 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts(X, cols, rows) | 1.334165 | 1.356287 | 1.333851 | 1.331545 | 1.338071 | 1.342106 |
3 | rowCounts(X[cols, rows]) | 1.347253 | 1.352751 | 1.372723 | 1.345297 | 1.357464 | 1.978855 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on logical+1000x100 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 172.271 | 173.6790 | 177.2729 | 176.678 | 178.808 | 195.033 |
2 | rowCounts_X_S | 189.107 | 191.3065 | 200.6118 | 200.190 | 201.693 | 356.354 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts_X_S | 1.09773 | 1.101495 | 1.131655 | 1.133078 | 1.127986 | 1.827147 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on logical+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.002144 | 0.0022385 | 0.0028208 | 0.0023435 | 0.0025190 | 0.041531 |
2 | colCounts(X, rows, cols) | 0.002373 | 0.0024670 | 0.0026433 | 0.0025505 | 0.0026750 | 0.004961 |
3 | colCounts(X[rows, cols]) | 0.002873 | 0.0031260 | 0.0034178 | 0.0032445 | 0.0034305 | 0.010647 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colCounts(X, rows, cols) | 1.106810 | 1.102077 | 0.9370916 | 1.088329 | 1.061929 | 0.1194529 |
3 | colCounts(X[rows, cols]) | 1.340019 | 1.396471 | 1.2116443 | 1.384468 | 1.361850 | 0.2563627 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.002096 | 0.0021575 | 0.0022643 | 0.002203 | 0.0023065 | 0.004211 |
2 | rowCounts(X, cols, rows) | 0.002327 | 0.0023905 | 0.0028323 | 0.002459 | 0.0026100 | 0.034085 |
3 | rowCounts(X[cols, rows]) | 0.002748 | 0.0029110 | 0.0031089 | 0.003015 | 0.0031515 | 0.007511 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts(X, cols, rows) | 1.110210 | 1.107995 | 1.250843 | 1.116205 | 1.131585 | 8.094277 |
3 | rowCounts(X[cols, rows]) | 1.311069 | 1.349247 | 1.372977 | 1.368588 | 1.366356 | 1.783662 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on integer+10x10 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 2.096 | 2.1575 | 2.26432 | 2.2030 | 2.3065 | 4.211 |
1 | colCounts_X_S | 2.144 | 2.2385 | 2.82077 | 2.3435 | 2.5190 | 41.531 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colCounts_X_S | 1.022901 | 1.037543 | 1.245747 | 1.063777 | 1.092131 | 9.862503 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.005496 | 0.005886 | 0.0060842 | 0.0059955 | 0.0061705 | 0.010629 |
2 | colCounts(X, rows, cols) | 0.009536 | 0.009996 | 0.0102940 | 0.0101595 | 0.0103535 | 0.013073 |
3 | colCounts(X[rows, cols]) | 0.013371 | 0.013768 | 0.0146739 | 0.0139555 | 0.0141520 | 0.073751 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colCounts(X, rows, cols) | 1.73508 | 1.698267 | 1.691933 | 1.694521 | 1.677903 | 1.229937 |
3 | colCounts(X[rows, cols]) | 2.43286 | 2.339110 | 2.411813 | 2.327662 | 2.293493 | 6.938658 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.006290 | 0.0064845 | 0.0066874 | 0.0065965 | 0.0067285 | 0.010290 |
2 | rowCounts(X, cols, rows) | 0.008769 | 0.0090920 | 0.0092881 | 0.0092510 | 0.0094130 | 0.010694 |
3 | rowCounts(X[cols, rows]) | 0.014183 | 0.0143920 | 0.0152446 | 0.0145455 | 0.0147010 | 0.072689 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts(X, cols, rows) | 1.394118 | 1.402113 | 1.388899 | 1.402410 | 1.398975 | 1.039261 |
3 | rowCounts(X[cols, rows]) | 2.254849 | 2.219446 | 2.279622 | 2.205033 | 2.184885 | 7.064043 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on integer+100x100 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 5.496 | 5.8860 | 6.08419 | 5.9955 | 6.1705 | 10.629 |
2 | rowCounts_X_S | 6.290 | 6.4845 | 6.68736 | 6.5965 | 6.7285 | 10.290 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.0000000 |
2 | rowCounts_X_S | 1.144469 | 1.101682 | 1.099137 | 1.100242 | 1.09043 | 0.9681061 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.005173 | 0.0053310 | 0.0054957 | 0.0054410 | 0.005562 | 0.009227 |
2 | colCounts(X, rows, cols) | 0.009233 | 0.0094115 | 0.0099716 | 0.0094985 | 0.009600 | 0.054607 |
3 | colCounts(X[rows, cols]) | 0.012814 | 0.0131405 | 0.0136673 | 0.0132700 | 0.013420 | 0.026789 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colCounts(X, rows, cols) | 1.784844 | 1.765429 | 1.814454 | 1.745727 | 1.725998 | 5.918175 |
3 | colCounts(X[rows, cols]) | 2.477093 | 2.464922 | 2.486926 | 2.438890 | 2.412801 | 2.903327 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.006286 | 0.0064400 | 0.0069763 | 0.006545 | 0.006684 | 0.046441 |
2 | rowCounts(X, cols, rows) | 0.009576 | 0.0098110 | 0.0101216 | 0.009976 | 0.010136 | 0.023467 |
3 | rowCounts(X[cols, rows]) | 0.014943 | 0.0152445 | 0.0157533 | 0.015379 | 0.015555 | 0.026122 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowCounts(X, cols, rows) | 1.523385 | 1.523447 | 1.450855 | 1.524217 | 1.516457 | 0.5053078 |
3 | rowCounts(X[cols, rows]) | 2.377187 | 2.367158 | 2.258122 | 2.349733 | 2.327199 | 0.5624771 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on integer+1000x10 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 5.173 | 5.331 | 5.49566 | 5.441 | 5.562 | 9.227 |
2 | rowCounts_X_S | 6.286 | 6.440 | 6.97630 | 6.545 | 6.684 | 46.441 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts_X_S | 1.215156 | 1.208028 | 1.26942 | 1.202904 | 1.201726 | 5.033163 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.007496 | 0.0078670 | 0.0080659 | 0.0079735 | 0.0081920 | 0.010714 |
2 | colCounts(X, rows, cols) | 0.011532 | 0.0117125 | 0.0124047 | 0.0118890 | 0.0120270 | 0.062186 |
3 | colCounts(X[rows, cols]) | 0.016238 | 0.0167235 | 0.0171649 | 0.0168835 | 0.0171365 | 0.027109 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colCounts(X, rows, cols) | 1.538420 | 1.488814 | 1.537918 | 1.491064 | 1.468140 | 5.804181 |
3 | colCounts(X[rows, cols]) | 2.166222 | 2.125779 | 2.128078 | 2.117452 | 2.091858 | 2.530241 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.005678 | 0.0059825 | 0.0063894 | 0.0061180 | 0.006240 | 0.031608 |
2 | rowCounts(X, cols, rows) | 0.009422 | 0.0098095 | 0.0100066 | 0.0099505 | 0.010155 | 0.011903 |
3 | rowCounts(X[cols, rows]) | 0.013411 | 0.0137055 | 0.0141973 | 0.0138955 | 0.014129 | 0.027171 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowCounts(X, cols, rows) | 1.659387 | 1.639699 | 1.566125 | 1.626430 | 1.627404 | 0.3765819 |
3 | rowCounts(X[cols, rows]) | 2.361923 | 2.290932 | 2.222014 | 2.271249 | 2.264263 | 0.8596241 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on integer+10x1000 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 5.678 | 5.9825 | 6.38938 | 6.1180 | 6.240 | 31.608 |
1 | colCounts_X_S | 7.496 | 7.8670 | 8.06592 | 7.9735 | 8.192 | 10.714 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.0000000 |
1 | colCounts_X_S | 1.320183 | 1.315002 | 1.262395 | 1.303285 | 1.31282 | 0.3389648 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.034451 | 0.0356035 | 0.0371499 | 0.0367555 | 0.0372390 | 0.063631 |
2 | colCounts(X, rows, cols) | 0.075804 | 0.0766235 | 0.0808626 | 0.0800180 | 0.0808165 | 0.190477 |
3 | colCounts(X[rows, cols]) | 0.106091 | 0.1082505 | 0.1128680 | 0.1122005 | 0.1150135 | 0.161123 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colCounts(X, rows, cols) | 2.200343 | 2.152134 | 2.176658 | 2.177035 | 2.170211 | 2.993462 |
3 | colCounts(X[rows, cols]) | 3.079475 | 3.040446 | 3.038177 | 3.052618 | 3.088523 | 2.532146 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.033385 | 0.0344460 | 0.0365511 | 0.0357950 | 0.0375155 | 0.077913 |
2 | rowCounts(X, cols, rows) | 0.066724 | 0.0673230 | 0.0706222 | 0.0693905 | 0.0733705 | 0.082511 |
3 | rowCounts(X[cols, rows]) | 0.096389 | 0.0993205 | 0.1031130 | 0.1018550 | 0.1053390 | 0.162200 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts(X, cols, rows) | 1.998622 | 1.954450 | 1.932152 | 1.938553 | 1.955738 | 1.059014 |
3 | rowCounts(X[cols, rows]) | 2.887195 | 2.883368 | 2.821067 | 2.845509 | 2.807879 | 2.081809 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on integer+100x1000 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 33.385 | 34.4460 | 36.55107 | 35.7950 | 37.5155 | 77.913 |
1 | colCounts_X_S | 34.451 | 35.6035 | 37.14990 | 36.7555 | 37.2390 | 63.631 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.000000 |
1 | colCounts_X_S | 1.031931 | 1.033603 | 1.016383 | 1.026833 | 0.9926297 | 0.816693 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.031942 | 0.0327945 | 0.0339031 | 0.0337160 | 0.034815 | 0.040094 |
2 | colCounts(X, rows, cols) | 0.067257 | 0.0678565 | 0.0705423 | 0.0696815 | 0.071716 | 0.086996 |
3 | colCounts(X[rows, cols]) | 0.095263 | 0.0966255 | 0.1000471 | 0.0987760 | 0.100986 | 0.169547 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colCounts(X, rows, cols) | 2.105598 | 2.069143 | 2.080705 | 2.066719 | 2.059917 | 2.169801 |
3 | colCounts(X[rows, cols]) | 2.982374 | 2.946394 | 2.950976 | 2.929648 | 2.900646 | 4.228738 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.042705 | 0.0433525 | 0.0460010 | 0.0458090 | 0.0467780 | 0.061322 |
2 | rowCounts(X, cols, rows) | 0.069610 | 0.0715705 | 0.0745829 | 0.0740770 | 0.0761745 | 0.095900 |
3 | rowCounts(X[cols, rows]) | 0.113582 | 0.1163195 | 0.1221983 | 0.1200425 | 0.1258025 | 0.221970 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts(X, cols, rows) | 1.630020 | 1.650897 | 1.621333 | 1.617084 | 1.628426 | 1.563876 |
3 | rowCounts(X[cols, rows]) | 2.659689 | 2.683109 | 2.656428 | 2.620500 | 2.689352 | 3.619745 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on integer+1000x100 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 31.942 | 32.7945 | 33.90306 | 33.716 | 34.815 | 40.094 |
2 | rowCounts_X_S | 42.705 | 43.3525 | 46.00098 | 45.809 | 46.778 | 61.322 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts_X_S | 1.336955 | 1.321944 | 1.356839 | 1.358672 | 1.343616 | 1.529456 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.002166 | 0.0022495 | 0.0025563 | 0.0023085 | 0.0024025 | 0.022475 |
2 | colCounts(X, rows, cols) | 0.002423 | 0.0024690 | 0.0025944 | 0.0025490 | 0.0026380 | 0.004998 |
3 | colCounts(X[rows, cols]) | 0.003008 | 0.0032495 | 0.0034260 | 0.0033440 | 0.0034830 | 0.007832 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 |
2 | colCounts(X, rows, cols) | 1.118652 | 1.097577 | 1.014912 | 1.10418 | 1.098023 | 0.2223804 |
3 | colCounts(X[rows, cols]) | 1.388735 | 1.444543 | 1.340199 | 1.44856 | 1.449740 | 0.3484761 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.002080 | 0.002135 | 0.0024487 | 0.0021925 | 0.0023310 | 0.020384 |
2 | rowCounts(X, cols, rows) | 0.002277 | 0.002364 | 0.0029680 | 0.0024320 | 0.0026310 | 0.044465 |
3 | rowCounts(X[cols, rows]) | 0.002776 | 0.003009 | 0.0034619 | 0.0030740 | 0.0032455 | 0.028448 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts(X, cols, rows) | 1.094712 | 1.107260 | 1.212078 | 1.109236 | 1.128700 | 2.181368 |
3 | rowCounts(X[cols, rows]) | 1.334615 | 1.409368 | 1.413800 | 1.402052 | 1.392321 | 1.395604 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on double+10x10 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 2.080 | 2.1350 | 2.44867 | 2.1925 | 2.3310 | 20.384 |
1 | colCounts_X_S | 2.166 | 2.2495 | 2.55630 | 2.3085 | 2.4025 | 22.475 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
1 | colCounts_X_S | 1.041346 | 1.05363 | 1.043954 | 1.052908 | 1.030674 | 1.10258 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.008043 | 0.008513 | 0.0102419 | 0.0086815 | 0.0109740 | 0.020431 |
2 | colCounts(X, rows, cols) | 0.011426 | 0.011750 | 0.0159653 | 0.0120705 | 0.0213945 | 0.035573 |
3 | colCounts(X[rows, cols]) | 0.026096 | 0.026396 | 0.0324221 | 0.0265765 | 0.0427830 | 0.110035 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | colCounts(X, rows, cols) | 1.420614 | 1.380242 | 1.558823 | 1.39037 | 1.949563 | 1.741129 |
3 | colCounts(X[rows, cols]) | 3.244560 | 3.100670 | 3.165623 | 3.06128 | 3.898579 | 5.385688 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.008175 | 0.0083980 | 0.0088239 | 0.0085045 | 0.0086350 | 0.015719 |
2 | rowCounts(X, cols, rows) | 0.011173 | 0.0115305 | 0.0119324 | 0.0116870 | 0.0118755 | 0.021638 |
3 | rowCounts(X[cols, rows]) | 0.016311 | 0.0166865 | 0.0180458 | 0.0168805 | 0.0170895 | 0.065964 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts(X, cols, rows) | 1.366728 | 1.373006 | 1.352283 | 1.374214 | 1.375275 | 1.376551 |
3 | rowCounts(X[cols, rows]) | 1.995229 | 1.986961 | 2.045103 | 1.984890 | 1.979097 | 4.196450 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on double+100x100 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 8.175 | 8.398 | 8.82389 | 8.5045 | 8.635 | 15.719 |
1 | colCounts_X_S | 8.043 | 8.513 | 10.24192 | 8.6815 | 10.974 | 20.431 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colCounts_X_S | 0.9838532 | 1.013694 | 1.160704 | 1.020812 | 1.270874 | 1.299765 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.006852 | 0.0070605 | 0.0072335 | 0.007179 | 0.0072950 | 0.011488 |
2 | colCounts(X, rows, cols) | 0.010001 | 0.0102500 | 0.0109706 | 0.010395 | 0.0105430 | 0.062343 |
3 | colCounts(X[rows, cols]) | 0.022905 | 0.0231390 | 0.0234086 | 0.023244 | 0.0234055 | 0.033792 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colCounts(X, rows, cols) | 1.459574 | 1.451739 | 1.516646 | 1.447973 | 1.445237 | 5.426793 |
3 | colCounts(X[rows, cols]) | 3.342820 | 3.277247 | 3.236155 | 3.237777 | 3.208430 | 2.941504 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.007731 | 0.0079720 | 0.0103602 | 0.0080715 | 0.0083555 | 0.047387 |
2 | rowCounts(X, cols, rows) | 0.011249 | 0.0116270 | 0.0137319 | 0.0119290 | 0.0121415 | 0.039464 |
3 | rowCounts(X[cols, rows]) | 0.016894 | 0.0174715 | 0.0235917 | 0.0176865 | 0.0179330 | 0.109830 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowCounts(X, cols, rows) | 1.455051 | 1.458480 | 1.325450 | 1.477916 | 1.453115 | 0.8328022 |
3 | rowCounts(X[cols, rows]) | 2.185228 | 2.191608 | 2.277161 | 2.191228 | 2.146251 | 2.3177243 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on double+1000x10 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 6.852 | 7.0605 | 7.23347 | 7.1790 | 7.2950 | 11.488 |
2 | rowCounts_X_S | 7.731 | 7.9720 | 10.36016 | 8.0715 | 8.3555 | 47.387 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts_X_S | 1.128284 | 1.129099 | 1.432253 | 1.124321 | 1.145374 | 4.124913 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.008270 | 0.008571 | 0.0088871 | 0.0087415 | 0.0089455 | 0.012358 |
2 | colCounts(X, rows, cols) | 0.012117 | 0.012465 | 0.0133405 | 0.0126575 | 0.0128990 | 0.071094 |
3 | colCounts(X[rows, cols]) | 0.017551 | 0.018219 | 0.0185476 | 0.0183810 | 0.0187755 | 0.024144 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colCounts(X, rows, cols) | 1.465175 | 1.454323 | 1.501099 | 1.447978 | 1.441954 | 5.752873 |
3 | colCounts(X[rows, cols]) | 2.122249 | 2.125656 | 2.087013 | 2.102728 | 2.098876 | 1.953714 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.007726 | 0.0081005 | 0.0088008 | 0.0082590 | 0.0084790 | 0.048638 |
2 | rowCounts(X, cols, rows) | 0.011144 | 0.0114290 | 0.0117761 | 0.0115640 | 0.0118250 | 0.015960 |
3 | rowCounts(X[cols, rows]) | 0.015795 | 0.0162430 | 0.0166161 | 0.0164035 | 0.0166565 | 0.033213 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowCounts(X, cols, rows) | 1.442402 | 1.410901 | 1.338065 | 1.400170 | 1.394622 | 0.3281385 |
3 | rowCounts(X[cols, rows]) | 2.044395 | 2.005185 | 1.888019 | 1.986136 | 1.964442 | 0.6828611 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on double+10x1000 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 7.726 | 8.1005 | 8.80081 | 8.2590 | 8.4790 | 48.638 |
1 | colCounts_X_S | 8.270 | 8.5710 | 8.88714 | 8.7415 | 8.9455 | 12.358 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colCounts_X_S | 1.070412 | 1.058083 | 1.009809 | 1.058421 | 1.055018 | 0.2540812 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.049440 | 0.0524380 | 0.0539035 | 0.0539400 | 0.055366 | 0.067887 |
2 | colCounts(X, rows, cols) | 0.078341 | 0.0811430 | 0.0855115 | 0.0851465 | 0.087653 | 0.179032 |
3 | colCounts(X[rows, cols]) | 0.196544 | 0.2037805 | 0.2146001 | 0.2149090 | 0.222064 | 0.244480 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colCounts(X, rows, cols) | 1.584567 | 1.547408 | 1.586381 | 1.578541 | 1.583156 | 2.637206 |
3 | colCounts(X[rows, cols]) | 3.975404 | 3.886123 | 3.981191 | 3.984223 | 4.010837 | 3.601279 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.054829 | 0.0577135 | 0.0612434 | 0.061151 | 0.062375 | 0.105587 |
2 | rowCounts(X, cols, rows) | 0.082418 | 0.0849970 | 0.0901913 | 0.090001 | 0.092821 | 0.136203 |
3 | rowCounts(X[cols, rows]) | 0.123533 | 0.1299695 | 0.1377765 | 0.137303 | 0.140325 | 0.278118 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts(X, cols, rows) | 1.503183 | 1.472740 | 1.472669 | 1.471783 | 1.488112 | 1.289960 |
3 | rowCounts(X[cols, rows]) | 2.253059 | 2.251977 | 2.249655 | 2.245311 | 2.249699 | 2.634017 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on double+100x1000 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 49.440 | 52.4380 | 53.90349 | 53.940 | 55.366 | 67.887 |
2 | rowCounts_X_S | 54.829 | 57.7135 | 61.24341 | 61.151 | 62.375 | 105.587 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts_X_S | 1.109001 | 1.100604 | 1.136168 | 1.133686 | 1.126594 | 1.555335 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> value <- 42
> colStats <- microbenchmark(colCounts_X_S = colCounts(X_S, value = value, na.rm = FALSE), `colCounts(X, rows, cols)` = colCounts(X,
+ value = value, na.rm = FALSE, rows = rows, cols = cols), `colCounts(X[rows, cols])` = colCounts(X[rows,
+ cols], value = value, na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> rowStats <- microbenchmark(rowCounts_X_S = rowCounts(X_S, value = value, na.rm = FALSE), `rowCounts(X, cols, rows)` = rowCounts(X,
+ value = value, na.rm = FALSE, rows = cols, cols = rows), `rowCounts(X[cols, rows])` = rowCounts(X[cols,
+ rows], value = value, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 0.048826 | 0.049702 | 0.0517852 | 0.0518185 | 0.0527520 | 0.065642 |
2 | colCounts(X, rows, cols) | 0.075753 | 0.076358 | 0.0794161 | 0.0784035 | 0.0814750 | 0.096335 |
3 | colCounts(X[rows, cols]) | 0.117300 | 0.120151 | 0.1262839 | 0.1243840 | 0.1275025 | 0.251628 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colCounts(X, rows, cols) | 1.551489 | 1.536316 | 1.533566 | 1.513041 | 1.544491 | 1.467582 |
3 | colCounts(X[rows, cols]) | 2.402409 | 2.417428 | 2.438607 | 2.400378 | 2.417017 | 3.833338 |
Table: Benchmarking of rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 0.054137 | 0.0551325 | 0.0577975 | 0.0587340 | 0.0590865 | 0.069548 |
2 | rowCounts(X, cols, rows) | 0.084963 | 0.0869950 | 0.0912077 | 0.0924395 | 0.0927485 | 0.127833 |
3 | rowCounts(X[cols, rows]) | 0.127433 | 0.1305020 | 0.1386157 | 0.1375325 | 0.1398425 | 0.263158 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts(X, cols, rows) | 1.569407 | 1.577926 | 1.578057 | 1.573867 | 1.569707 | 1.838054 |
3 | rowCounts(X[cols, rows]) | 2.353898 | 2.367061 | 2.398300 | 2.341616 | 2.366742 | 3.783833 |
Figure: Benchmarking of colCounts_X_S(), colCounts(X, rows, cols)() and colCounts(X[rows, cols])() on double+1000x100 data as well as rowCounts_X_S(), rowCounts(X, cols, rows)() and rowCounts(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 48.826 | 49.7020 | 51.78525 | 51.8185 | 52.7520 | 65.642 |
2 | rowCounts_X_S | 54.137 | 55.1325 | 57.79748 | 58.7340 | 59.0865 | 69.548 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCounts_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCounts_X_S | 1.108774 | 1.109261 | 1.116099 | 1.133456 | 1.120081 | 1.059505 |
Figure: Benchmarking of colCounts_X_S() and rowCounts_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 33.66 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowCounts_subset')
Copyright Dongcan Jiang. Last updated on 2019-09-10 20:36:47 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>