-
Notifications
You must be signed in to change notification settings - Fork 34
sum2
matrixStats: Benchmark report
This report benchmark the performance of sum2() against alternative methods.
- sum() + [()
as below
> sum2_R <- function(x, na.rm = FALSE, idxs) {
+ sum(x[idxs], na.rm = na.rm)
+ }
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3242120 173.2 5709258 305.0 5709258 305.0
Vcells 33422056 255.0 60231636 459.6 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x), sum = sum(x), unit = "ms")
Table: Benchmarking of sum2() and sum() on n = 1000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 0.000696 | 0.0007135 | 0.0007671 | 0.0007280 | 0.0007650 | 0.003167 |
1 | sum2 | 0.002496 | 0.0025470 | 0.0027997 | 0.0025965 | 0.0027015 | 0.018432 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | sum2 | 3.586207 | 3.569727 | 3.649806 | 3.566621 | 3.531372 | 5.820019 |
Figure: Benchmarking of sum2() and sum() on n = 1000+all data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3239955 173.1 5709258 305.0 5709258 305.0
Vcells 11787296 90.0 48185309 367.7 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 1000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum+[() | 0.001158 | 0.0013055 | 0.0016169 | 0.001460 | 0.0015950 | 0.012060 |
1 | sum2 | 0.001956 | 0.0020410 | 0.0022577 | 0.002116 | 0.0021655 | 0.015296 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum+[() | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
1 | sum2 | 1.689119 | 1.563386 | 1.396355 | 1.449315 | 1.35768 | 1.268325 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 1000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240021 173.1 5709258 305.0 5709258 305.0
Vcells 11787448 90.0 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 1000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum+[() | 0.001665 | 0.0018235 | 0.0021305 | 0.0018975 | 0.0020215 | 0.021375 |
1 | sum2 | 0.002296 | 0.0023755 | 0.0026987 | 0.0024770 | 0.0025750 | 0.022246 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum+[() | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | sum2 | 1.378979 | 1.302715 | 1.266745 | 1.305402 | 1.273807 | 1.040749 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 1000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240084 173.1 5709258 305.0 5709258 305.0
Vcells 11788202 90.0 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 1000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum+[() | 0.002515 | 0.0026475 | 0.0028923 | 0.0027495 | 0.002843 | 0.015982 |
1 | sum2 | 0.003039 | 0.0030885 | 0.0033549 | 0.0032005 | 0.003283 | 0.016843 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum+[() | 1.00000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
1 | sum2 | 1.20835 | 1.166572 | 1.159968 | 1.16403 | 1.154766 | 1.053873 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 1000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240085 173.1 5709258 305.0 5709258 305.0
Vcells 11787831 90.0 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x), sum = sum(x), unit = "ms")
Table: Benchmarking of sum2() and sum() on n = 10000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 0.005396 | 0.0055005 | 0.0057501 | 0.0055365 | 0.0056140 | 0.015419 |
1 | sum2 | 0.011895 | 0.0119915 | 0.0123481 | 0.0120420 | 0.0121775 | 0.033438 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 1.000000 | 1.000000 | 1.00000 | 1.00000 | 1.000000 | 1.000000 |
1 | sum2 | 2.204411 | 2.180074 | 2.14744 | 2.17502 | 2.169131 | 2.168623 |
Figure: Benchmarking of sum2() and sum() on n = 10000+all data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240210 173.1 5709258 305.0 5709258 305.0
Vcells 11788884 90.0 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 10000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.005390 | 0.005507 | 0.0058540 | 0.005587 | 0.0057530 | 0.027598 |
2 | sum+[() | 0.005109 | 0.005396 | 0.0061182 | 0.005596 | 0.0059905 | 0.037891 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum+[() | 0.9478664 | 0.9798438 | 1.045137 | 1.001611 | 1.041283 | 1.372962 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 10000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240273 173.1 5709258 305.0 5709258 305.0
Vcells 11790154 90.0 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 10000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.009012 | 0.0091635 | 0.0096359 | 0.009295 | 0.0094360 | 0.032655 |
2 | sum+[() | 0.009303 | 0.0096105 | 0.0104843 | 0.009792 | 0.0100435 | 0.046376 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.00000 | 1.00000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.03229 | 1.04878 | 1.088046 | 1.05347 | 1.064381 | 1.420181 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 10000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240336 173.1 5709258 305.0 5709258 305.0
Vcells 11792456 90.0 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 10000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.016272 | 0.0164560 | 0.0168704 | 0.0165820 | 0.0167310 | 0.039790 |
2 | sum+[() | 0.017655 | 0.0179795 | 0.0187115 | 0.0181925 | 0.0184385 | 0.045732 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.084993 | 1.09258 | 1.109133 | 1.097123 | 1.102056 | 1.149334 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 10000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240337 173.1 5709258 305.0 5709258 305.0
Vcells 11792391 90.0 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x), sum = sum(x), unit = "ms")
Table: Benchmarking of sum2() and sum() on n = 100000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 0.051804 | 0.0520155 | 0.0527654 | 0.0531500 | 0.0532705 | 0.057469 |
1 | sum2 | 0.105053 | 0.1052065 | 0.1058334 | 0.1053235 | 0.1054905 | 0.141959 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
1 | sum2 | 2.027894 | 2.022599 | 2.005733 | 1.981628 | 1.98028 | 2.470184 |
Figure: Benchmarking of sum2() and sum() on n = 100000+all data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240462 173.1 5709258 305.0 5709258 305.0
Vcells 11798845 90.1 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 100000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.038476 | 0.0386170 | 0.0394066 | 0.0386830 | 0.038786 | 0.101996 |
2 | sum+[() | 0.044886 | 0.0454885 | 0.0462292 | 0.0457295 | 0.046056 | 0.064244 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.00000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 |
2 | sum+[() | 1.166597 | 1.17794 | 1.173135 | 1.18216 | 1.187439 | 0.6298678 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 100000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240525 173.1 5709258 305.0 5709258 305.0
Vcells 11809255 90.1 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 100000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.072549 | 0.0727515 | 0.0746807 | 0.0730310 | 0.0746845 | 0.112514 |
2 | sum+[() | 0.083135 | 0.0841910 | 0.0881114 | 0.0850615 | 0.0866565 | 0.170008 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.145915 | 1.157241 | 1.179841 | 1.164731 | 1.160301 | 1.510994 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 100000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240588 173.1 5709258 305.0 5709258 305.0
Vcells 11829297 90.3 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 100000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.146397 | 0.146569 | 0.1477314 | 0.1466790 | 0.146982 | 0.205369 |
2 | sum+[() | 0.166384 | 0.168057 | 0.1697833 | 0.1686275 | 0.169579 | 0.196625 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.00000 | 1.000000 |
2 | sum+[() | 1.136526 | 1.146607 | 1.14927 | 1.149636 | 1.15374 | 0.957423 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 100000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240589 173.1 5709258 305.0 5709258 305.0
Vcells 11829368 90.3 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x), sum = sum(x), unit = "ms")
Table: Benchmarking of sum2() and sum() on n = 1000000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 0.501621 | 0.5194995 | 0.5432483 | 0.528009 | 0.531586 | 1.465403 |
1 | sum2 | 1.004862 | 1.0307020 | 1.0333045 | 1.031092 | 1.034328 | 1.072684 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | sum2 | 2.00323 | 1.984029 | 1.902085 | 1.952792 | 1.945739 | 0.7320061 |
Figure: Benchmarking of sum2() and sum() on n = 1000000+all data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240714 173.1 5709258 305.0 5709258 305.0
Vcells 11889821 90.8 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 1000000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.363530 | 0.3658475 | 0.3789617 | 0.3711655 | 0.3754525 | 0.788152 |
2 | sum+[() | 0.438339 | 0.4530720 | 0.4862498 | 0.4612240 | 0.4861020 | 1.021969 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | sum+[() | 1.205785 | 1.238418 | 1.283111 | 1.242637 | 1.29471 | 1.296665 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 1000000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240777 173.1 5709258 305.0 5709258 305.0
Vcells 11989865 91.5 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 1000000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.723495 | 0.7295825 | 0.7508727 | 0.738803 | 0.7644305 | 0.905912 |
2 | sum+[() | 0.852317 | 0.8789855 | 1.1467230 | 1.315463 | 1.3500170 | 1.409307 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.178055 | 1.204779 | 1.527187 | 1.780533 | 1.766043 | 1.555678 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 1000000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240840 173.1 5709258 305.0 5709258 305.0
Vcells 12190436 93.1 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 1000000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.448964 | 1.463207 | 1.498134 | 1.492736 | 1.514633 | 2.004919 |
2 | sum+[() | 1.683709 | 1.713105 | 1.913191 | 1.738438 | 1.799778 | 7.315892 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.162009 | 1.170788 | 1.277049 | 1.164598 | 1.188259 | 3.648971 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 1000000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240841 173.1 5709258 305.0 5709258 305.0
Vcells 12190065 93.1 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x), sum = sum(x), unit = "ms")
Table: Benchmarking of sum2() and sum() on n = 10000000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 5.274421 | 5.401382 | 5.473633 | 5.477968 | 5.534058 | 5.646441 |
1 | sum2 | 10.129370 | 10.226163 | 10.315181 | 10.285557 | 10.427081 | 10.569084 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 1.00000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | sum2 | 1.92047 | 1.89325 | 1.884522 | 1.877623 | 1.884166 | 1.871813 |
Figure: Benchmarking of sum2() and sum() on n = 10000000+all data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3240966 173.1 5709258 305.0 5709258 305.0
Vcells 12790518 97.6 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 10000000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 4.268098 | 4.333766 | 4.472542 | 4.370467 | 4.494381 | 5.251529 |
2 | sum+[() | 5.882755 | 7.707095 | 8.185736 | 7.785639 | 7.920075 | 18.760870 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.378308 | 1.778383 | 1.83022 | 1.781421 | 1.762217 | 3.572459 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 10000000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241029 173.1 5709258 305.0 5709258 305.0
Vcells 13791193 105.3 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 10000000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 7.501035 | 7.563637 | 7.807667 | 7.69571 | 7.867394 | 9.60192 |
2 | sum+[() | 9.847038 | 13.457123 | 13.709807 | 13.56098 | 13.789718 | 23.18444 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.312757 | 1.779187 | 1.755942 | 1.762148 | 1.752768 | 2.414563 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 10000000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241092 173.1 5709258 305.0 5709258 305.0
Vcells 15791235 120.5 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on integer+n = 10000000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 14.67454 | 15.31241 | 15.52328 | 15.64326 | 15.74342 | 17.15975 |
2 | sum+[() | 17.75512 | 19.81172 | 24.65424 | 26.20575 | 26.99759 | 33.87819 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.209927 | 1.293834 | 1.588211 | 1.67521 | 1.714849 | 1.974282 |
Figure: Benchmarking of sum2() and sum+[()() on integer+n = 10000000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241093 173.1 5709258 305.0 5709258 305.0
Vcells 21346364 162.9 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x), sum = sum(x), unit = "ms")
Table: Benchmarking of sum2() and sum() on n = 1000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 0.000937 | 0.0009575 | 0.0010382 | 0.0009950 | 0.0010325 | 0.004678 |
1 | sum2 | 0.002480 | 0.0025285 | 0.0029389 | 0.0025805 | 0.0027080 | 0.033102 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
1 | sum2 | 2.646745 | 2.640731 | 2.830709 | 2.593467 | 2.62276 | 7.076101 |
Figure: Benchmarking of sum2() and sum() on n = 1000+all data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241218 173.1 5709258 305.0 5709258 305.0
Vcells 17347680 132.4 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 1000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum+[() | 0.001372 | 0.0015245 | 0.0017279 | 0.0016025 | 0.0017085 | 0.011558 |
1 | sum2 | 0.001905 | 0.0020395 | 0.0022567 | 0.0021220 | 0.0021730 | 0.014957 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum+[() | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | sum2 | 1.388484 | 1.337816 | 1.306039 | 1.324181 | 1.271876 | 1.294082 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 1000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241281 173.2 5709258 305.0 5709258 305.0
Vcells 17347824 132.4 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 1000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum+[() | 0.001870 | 0.0019985 | 0.0022490 | 0.0020915 | 0.0022400 | 0.014002 |
1 | sum2 | 0.002289 | 0.0023360 | 0.0026003 | 0.0024330 | 0.0025445 | 0.015861 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum+[() | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
1 | sum2 | 1.224064 | 1.168877 | 1.156198 | 1.16328 | 1.135938 | 1.132767 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 1000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241344 173.2 5709258 305.0 5709258 305.0
Vcells 17348066 132.4 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 1000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum+[() | 0.002831 | 0.0030265 | 0.0032822 | 0.0031190 | 0.0032495 | 0.016792 |
1 | sum2 | 0.003000 | 0.0030855 | 0.0033699 | 0.0032065 | 0.0032845 | 0.018411 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum+[() | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | sum2 | 1.059696 | 1.019494 | 1.026723 | 1.028054 | 1.010771 | 1.096415 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 1000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241345 173.2 5709258 305.0 5709258 305.0
Vcells 17347695 132.4 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x), sum = sum(x), unit = "ms")
Table: Benchmarking of sum2() and sum() on n = 10000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 0.007959 | 0.0080275 | 0.0081383 | 0.0080710 | 0.008106 | 0.014149 |
1 | sum2 | 0.012019 | 0.0121200 | 0.0123893 | 0.0121935 | 0.012322 | 0.024850 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | sum2 | 1.510114 | 1.50981 | 1.522349 | 1.510779 | 1.520109 | 1.756308 |
Figure: Benchmarking of sum2() and sum() on n = 10000+all data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241470 173.2 5709258 305.0 5709258 305.0
Vcells 17348748 132.4 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 10000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.005478 | 0.0056365 | 0.005936 | 0.005741 | 0.0058320 | 0.023643 |
2 | sum+[() | 0.006356 | 0.0066330 | 0.007286 | 0.006789 | 0.0070375 | 0.031268 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.160278 | 1.176794 | 1.227417 | 1.182547 | 1.206704 | 1.322506 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 10000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241533 173.2 5709258 305.0 5709258 305.0
Vcells 17350715 132.4 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 10000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.009143 | 0.0092735 | 0.0097529 | 0.0093860 | 0.0095245 | 0.042477 |
2 | sum+[() | 0.011242 | 0.0118460 | 0.0126331 | 0.0120905 | 0.0124100 | 0.041412 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | sum+[() | 1.229575 | 1.277403 | 1.295323 | 1.288142 | 1.302955 | 0.9749276 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 10000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241596 173.2 5709258 305.0 5709258 305.0
Vcells 17352757 132.4 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 10000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.016381 | 0.016566 | 0.0169003 | 0.0167325 | 0.0168650 | 0.032969 |
2 | sum+[() | 0.021515 | 0.022339 | 0.0233113 | 0.0226445 | 0.0230925 | 0.049600 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.313412 | 1.348485 | 1.379346 | 1.353324 | 1.369256 | 1.504444 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 10000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241597 173.2 5709258 305.0 5709258 305.0
Vcells 17352386 132.4 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x), sum = sum(x), unit = "ms")
Table: Benchmarking of sum2() and sum() on n = 100000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 0.077628 | 0.077864 | 0.0781125 | 0.0779455 | 0.0780470 | 0.081788 |
1 | sum2 | 0.105096 | 0.105208 | 0.1056838 | 0.1053380 | 0.1054645 | 0.129068 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
1 | sum2 | 1.353841 | 1.351176 | 1.352969 | 1.351431 | 1.351295 | 1.57808 |
Figure: Benchmarking of sum2() and sum() on n = 100000+all data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241722 173.2 5709258 305.0 5709258 305.0
Vcells 17358840 132.5 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 100000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.037749 | 0.0385065 | 0.0400214 | 0.0388975 | 0.039074 | 0.116224 |
2 | sum+[() | 0.055322 | 0.0565515 | 0.0586653 | 0.0571910 | 0.058244 | 0.095883 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.0000 | 1.000000 | 1.0000000 |
2 | sum+[() | 1.465522 | 1.468622 | 1.465849 | 1.4703 | 1.490608 | 0.8249845 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 100000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241785 173.2 5709258 305.0 5709258 305.0
Vcells 17368884 132.6 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 100000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.072660 | 0.0745435 | 0.0763096 | 0.074757 | 0.075596 | 0.113927 |
2 | sum+[() | 0.104418 | 0.1081720 | 0.1119452 | 0.109947 | 0.112189 | 0.195060 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | sum+[() | 1.437077 | 1.451126 | 1.466987 | 1.470725 | 1.48406 | 1.712149 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 100000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241848 173.2 5709258 305.0 5709258 305.0
Vcells 17390022 132.7 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 100000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.146417 | 0.1468015 | 0.1525214 | 0.1505095 | 0.1545380 | 0.225430 |
2 | sum+[() | 0.195938 | 0.1993685 | 0.2304425 | 0.2070100 | 0.2145965 | 0.405332 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.338219 | 1.358082 | 1.510887 | 1.375395 | 1.388633 | 1.798039 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 100000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241850 173.2 5709258 305.0 5709258 305.0
Vcells 17389659 132.7 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x), sum = sum(x), unit = "ms")
Table: Benchmarking of sum2() and sum() on n = 1000000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 0.772659 | 0.819567 | 0.8324265 | 0.834388 | 0.841484 | 0.915548 |
1 | sum2 | 1.015984 | 1.059741 | 1.0764473 | 1.079457 | 1.086091 | 1.174845 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | sum2 | 1.314919 | 1.29305 | 1.293144 | 1.293711 | 1.290685 | 1.283215 |
Figure: Benchmarking of sum2() and sum() on n = 1000000+all data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3241975 173.2 5709258 305.0 5709258 305.0
Vcells 17450112 133.2 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 1000000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.507993 | 0.5601745 | 0.609585 | 0.609423 | 0.6560355 | 0.904999 |
2 | sum+[() | 0.722973 | 0.8044595 | 1.186473 | 1.314753 | 1.3507275 | 1.460954 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.423195 | 1.436087 | 1.946362 | 2.157373 | 2.058924 | 1.614316 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 1000000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3242038 173.2 5709258 305.0 5709258 305.0
Vcells 17550156 133.9 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 1000000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 0.79268 | 0.8674115 | 0.8985236 | 0.8871595 | 0.9208995 | 1.073021 |
2 | sum+[() | 1.24500 | 2.0127145 | 2.0613914 | 2.0419175 | 2.0710115 | 12.692151 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | sum+[() | 1.570621 | 2.320369 | 2.294198 | 2.301635 | 2.248901 | 11.82843 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 1000000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3242101 173.2 5709258 305.0 5709258 305.0
Vcells 17750198 135.5 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 1000000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.493228 | 1.545726 | 1.604957 | 1.590885 | 1.620530 | 2.112727 |
2 | sum+[() | 2.198436 | 3.745358 | 4.011810 | 3.793943 | 3.847101 | 14.064577 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.0000 | 1.000000 | 1.000000 |
2 | sum+[() | 1.472271 | 2.423041 | 2.499637 | 2.3848 | 2.373977 | 6.657073 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 1000000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3242102 173.2 5709258 305.0 5709258 305.0
Vcells 17749827 135.5 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x), sum = sum(x), unit = "ms")
Table: Benchmarking of sum2() and sum() on n = 10000000+all data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 8.197766 | 8.482046 | 8.59797 | 8.567894 | 8.732012 | 8.946944 |
1 | sum2 | 10.509965 | 10.721270 | 10.88363 | 10.896505 | 11.072421 | 11.386470 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | sum | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | sum2 | 1.282052 | 1.263996 | 1.265837 | 1.271783 | 1.268026 | 1.272666 |
Figure: Benchmarking of sum2() and sum() on n = 10000000+all data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> subset
[1] 0.2
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3242227 173.2 5709258 305.0 5709258 305.0
Vcells 18350280 140.1 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 10000000+0.2 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 6.700800 | 6.84244 | 7.015533 | 6.890695 | 7.098933 | 9.725433 |
2 | sum+[() | 8.996122 | 14.01923 | 14.510434 | 14.594601 | 14.820728 | 26.779905 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | sum+[() | 1.342545 | 2.048864 | 2.068329 | 2.118016 | 2.08774 | 2.753595 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 10000000+0.2 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> subset
[1] 0.4
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3242290 173.2 5709258 305.0 5709258 305.0
Vcells 19351676 147.7 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 10000000+0.4 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 8.667995 | 8.779704 | 9.099489 | 8.914767 | 9.23872 | 10.65943 |
2 | sum+[() | 13.934503 | 20.904911 | 26.117672 | 21.364256 | 24.34419 | 284.23356 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | sum+[() | 1.607581 | 2.38105 | 2.870235 | 2.396502 | 2.635018 | 26.66498 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 10000000+0.4 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> subset
[1] 0.8
> idxs <- sort(sample(length(x), size = subset * length(x), replace = FALSE))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3242353 173.2 5709258 305.0 5709258 305.0
Vcells 21351718 163.0 38548248 294.1 87357391 666.5
> stats <- microbenchmark(sum2 = sum2(x, idxs = idxs), `sum+[()` = sum2_R(x, idxs = idxs), unit = "ms")
Table: Benchmarking of sum2() and sum+[()() on double+n = 10000000+0.8 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 15.06396 | 16.19000 | 16.74258 | 16.63105 | 16.86282 | 30.89018 |
2 | sum+[() | 24.13433 | 38.23597 | 46.48052 | 38.91965 | 54.78060 | 310.60984 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | sum2 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000 |
2 | sum+[() | 1.602124 | 2.361703 | 2.776187 | 2.34018 | 3.248603 | 10.0553 |
Figure: Benchmarking of sum2() and sum+[()() on double+n = 10000000+0.8 data. Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 1.17 mins.
To reproduce this report, do:
html <- matrixStats:::benchmark('sum2')
Copyright Henrik Bengtsson. Last updated on 2019-09-10 21:11:53 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>