-
Notifications
You must be signed in to change notification settings - Fork 34
colRowSums2
matrixStats: Benchmark report
This report benchmark the performance of colSums2() and rowSums2() against alternative methods.
- apply() + sum()
- colSums() and rowSums()
- .colSums() and .rowSums()
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3201658 171.0 5709258 305.0 5709258 305.0
Vcells 6523933 49.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2 = colSums2(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), colSums = colSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3199978 170.9 5709258 305.0 5709258 305.0
Vcells 6519323 49.8 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2 = rowSums2(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), rowSums = rowSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 0.001133 | 0.001386 | 0.0018295 | 0.0017945 | 0.0019915 | 0.012452 |
2 | .colSums | 0.001634 | 0.001849 | 0.0022563 | 0.0021175 | 0.0024265 | 0.014209 |
3 | colSums | 0.002971 | 0.003299 | 0.0038329 | 0.0036710 | 0.0042280 | 0.012916 |
4 | apply+sum | 0.019245 | 0.020566 | 0.0221572 | 0.0209930 | 0.0216235 | 0.113238 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | .colSums | 1.442189 | 1.334055 | 1.233285 | 1.179994 | 1.218428 | 1.141102 |
3 | colSums | 2.622242 | 2.380231 | 2.095098 | 2.045695 | 2.123023 | 1.037263 |
4 | apply+sum | 16.985878 | 14.838384 | 12.111228 | 11.698523 | 10.857896 | 9.093961 |
Table: Benchmarking of rowSums2(), .rowSums(), rowSums() and apply+sum() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 0.001095 | 0.0012995 | 0.0016709 | 0.0017025 | 0.0018095 | 0.009964 |
2 | .rowSums | 0.002430 | 0.0026155 | 0.0028790 | 0.0027960 | 0.0028985 | 0.012598 |
3 | rowSums | 0.003668 | 0.0038785 | 0.0049349 | 0.0043325 | 0.0046560 | 0.036676 |
4 | apply+sum | 0.019635 | 0.0203530 | 0.0211361 | 0.0205730 | 0.0208930 | 0.063792 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | .rowSums | 2.219178 | 2.012697 | 1.723006 | 1.642291 | 1.601824 | 1.264352 |
3 | rowSums | 3.349772 | 2.984609 | 2.953468 | 2.544787 | 2.573087 | 3.680851 |
4 | apply+sum | 17.931507 | 15.662178 | 12.649524 | 12.083994 | 11.546283 | 6.402248 |
Figure: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on integer+10x10 data as well as rowSums2(), .rowSums(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2() and rowSums2() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2 | 1.095 | 1.2995 | 1.67090 | 1.7025 | 1.8095 | 9.964 |
1 | colSums2 | 1.133 | 1.3860 | 1.82948 | 1.7945 | 1.9915 | 12.452 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
1 | colSums2 | 1.034703 | 1.066564 | 1.094907 | 1.054038 | 1.10058 | 1.249699 |
Figure: Benchmarking of colSums2() and rowSums2() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3198558 170.9 5709258 305.0 5709258 305.0
Vcells 6136144 46.9 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2 = colSums2(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), colSums = colSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3198549 170.9 5709258 305.0 5709258 305.0
Vcells 6141182 46.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2 = rowSums2(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), rowSums = rowSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 0.009088 | 0.0096250 | 0.0102482 | 0.010057 | 0.010423 | 0.017808 |
1 | colSums2 | 0.010865 | 0.0112420 | 0.0123764 | 0.011790 | 0.012167 | 0.042313 |
3 | colSums | 0.010617 | 0.0112615 | 0.0125573 | 0.011954 | 0.012511 | 0.053884 |
4 | apply+sum | 0.139616 | 0.1417465 | 0.1512812 | 0.143997 | 0.149455 | 0.295777 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colSums2 | 1.195533 | 1.168000 | 1.207671 | 1.172318 | 1.167322 | 2.376067 |
3 | colSums | 1.168244 | 1.170026 | 1.225325 | 1.188625 | 1.200326 | 3.025831 |
4 | apply+sum | 15.362676 | 14.726909 | 14.761794 | 14.318087 | 14.338962 | 16.609221 |
Table: Benchmarking of rowSums2(), .rowSums(), rowSums() and apply+sum() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 0.011012 | 0.0113750 | 0.0118727 | 0.0117670 | 0.0121055 | 0.022659 |
2 | .rowSums | 0.038415 | 0.0386555 | 0.0390685 | 0.0389325 | 0.0391145 | 0.043933 |
3 | rowSums | 0.040014 | 0.0402805 | 0.0407892 | 0.0405575 | 0.0410045 | 0.050169 |
4 | apply+sum | 0.140327 | 0.1423640 | 0.1474834 | 0.1432280 | 0.1459140 | 0.278656 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | .rowSums | 3.488467 | 3.398286 | 3.290620 | 3.308617 | 3.231135 | 1.938876 |
3 | rowSums | 3.633672 | 3.541143 | 3.435555 | 3.446715 | 3.387262 | 2.214087 |
4 | apply+sum | 12.743098 | 12.515517 | 12.422081 | 12.172007 | 12.053529 | 12.297807 |
Figure: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on integer+100x100 data as well as rowSums2(), .rowSums(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2() and rowSums2() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2 | 11.012 | 11.375 | 11.87268 | 11.767 | 12.1055 | 22.659 |
1 | colSums2 | 10.865 | 11.242 | 12.37640 | 11.790 | 12.1670 | 42.313 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2 | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
1 | colSums2 | 0.9866509 | 0.9883077 | 1.042427 | 1.001955 | 1.00508 | 1.867382 |
Figure: Benchmarking of colSums2() and rowSums2() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3199312 170.9 5709258 305.0 5709258 305.0
Vcells 6139930 46.9 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2 = colSums2(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), colSums = colSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3199303 170.9 5709258 305.0 5709258 305.0
Vcells 6144968 46.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2 = rowSums2(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), rowSums = rowSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 0.009446 | 0.0097855 | 0.0101568 | 0.0100190 | 0.0104385 | 0.014322 |
3 | colSums | 0.010809 | 0.0112885 | 0.0120771 | 0.0117345 | 0.0124155 | 0.025192 |
1 | colSums2 | 0.012286 | 0.0126580 | 0.0131754 | 0.0130460 | 0.0134280 | 0.025906 |
4 | apply+sum | 0.068304 | 0.0723625 | 0.0743246 | 0.0731125 | 0.0739570 | 0.159002 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | colSums | 1.144294 | 1.153595 | 1.189057 | 1.171225 | 1.189395 | 1.758972 |
1 | colSums2 | 1.300656 | 1.293547 | 1.297198 | 1.302126 | 1.286392 | 1.808826 |
4 | apply+sum | 7.230997 | 7.394870 | 7.317678 | 7.297385 | 7.085022 | 11.101941 |
Table: Benchmarking of rowSums2(), .rowSums(), rowSums() and apply+sum() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 0.012446 | 0.0128310 | 0.0134742 | 0.0133635 | 0.0136605 | 0.028865 |
4 | apply+sum | 0.068625 | 0.0722675 | 0.0738879 | 0.0728035 | 0.0740535 | 0.134151 |
2 | .rowSums | 0.136008 | 0.1363105 | 0.1367446 | 0.1365245 | 0.1367660 | 0.141067 |
3 | rowSums | 0.137386 | 0.1379325 | 0.1391066 | 0.1384995 | 0.1387965 | 0.179794 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
4 | apply+sum | 5.51382 | 5.632258 | 5.483638 | 5.447936 | 5.420995 | 4.647532 |
2 | .rowSums | 10.92785 | 10.623529 | 10.148591 | 10.216223 | 10.011786 | 4.887130 |
3 | rowSums | 11.03857 | 10.749942 | 10.323894 | 10.364014 | 10.160426 | 6.228789 |
Figure: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on integer+1000x10 data as well as rowSums2(), .rowSums(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2() and rowSums2() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 12.286 | 12.658 | 13.17544 | 13.0460 | 13.4280 | 25.906 |
2 | rowSums2 | 12.446 | 12.831 | 13.47424 | 13.3635 | 13.6605 | 28.865 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2 | 1.013023 | 1.013667 | 1.022679 | 1.024337 | 1.017315 | 1.114221 |
Figure: Benchmarking of colSums2() and rowSums2() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3199548 170.9 5709258 305.0 5709258 305.0
Vcells 6140754 46.9 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2 = colSums2(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), colSums = colSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3199539 170.9 5709258 305.0 5709258 305.0
Vcells 6145792 46.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2 = rowSums2(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), rowSums = rowSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 0.008985 | 0.0094030 | 0.0100757 | 0.0097305 | 0.0102510 | 0.021481 |
1 | colSums2 | 0.009497 | 0.0098950 | 0.0107956 | 0.0104910 | 0.0107835 | 0.041372 |
3 | colSums | 0.010312 | 0.0111085 | 0.0120459 | 0.0118685 | 0.0126520 | 0.021115 |
4 | apply+sum | 0.790246 | 0.8194405 | 0.8353282 | 0.8273970 | 0.8535335 | 0.913296 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colSums2 | 1.056984 | 1.052324 | 1.071458 | 1.078156 | 1.051946 | 1.9259811 |
3 | colSums | 1.147691 | 1.181378 | 1.195545 | 1.219721 | 1.234221 | 0.9829617 |
4 | apply+sum | 87.951697 | 87.146709 | 82.905562 | 85.031293 | 83.263438 | 42.5164564 |
Table: Benchmarking of rowSums2(), .rowSums(), rowSums() and apply+sum() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 0.009553 | 0.0102075 | 0.0118775 | 0.0109715 | 0.0115800 | 0.020964 |
2 | .rowSums | 0.029425 | 0.0301750 | 0.0322925 | 0.0308090 | 0.0318405 | 0.050280 |
3 | rowSums | 0.031115 | 0.0321655 | 0.0361350 | 0.0331650 | 0.0347210 | 0.074309 |
4 | apply+sum | 0.787927 | 0.8261915 | 0.8764775 | 0.8407450 | 0.8615420 | 1.556184 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | .rowSums | 3.080184 | 2.956160 | 2.718799 | 2.808094 | 2.749611 | 2.398397 |
3 | rowSums | 3.257092 | 3.151163 | 3.042305 | 3.022832 | 2.998359 | 3.544600 |
4 | apply+sum | 82.479535 | 80.939652 | 73.793094 | 76.629905 | 74.399136 | 74.231254 |
Figure: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on integer+10x1000 data as well as rowSums2(), .rowSums(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2() and rowSums2() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 9.497 | 9.8950 | 10.79565 | 10.4910 | 10.7835 | 41.372 |
2 | rowSums2 | 9.553 | 10.2075 | 11.87750 | 10.9715 | 11.5800 | 20.964 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowSums2 | 1.005897 | 1.031582 | 1.100212 | 1.045801 | 1.073863 | 0.5067195 |
Figure: Benchmarking of colSums2() and rowSums2() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3199764 170.9 5709258 305.0 5709258 305.0
Vcells 6141335 46.9 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2 = colSums2(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), colSums = colSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3199758 170.9 5709258 305.0 5709258 305.0
Vcells 6191378 47.3 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2 = rowSums2(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), rowSums = rowSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 0.075066 | 0.0760865 | 0.0774762 | 0.0773605 | 0.0783695 | 0.081952 |
3 | colSums | 0.076752 | 0.0789050 | 0.0803119 | 0.0797965 | 0.0816615 | 0.095806 |
1 | colSums2 | 0.097593 | 0.0996930 | 0.1011929 | 0.1005225 | 0.1022280 | 0.116382 |
4 | apply+sum | 1.260123 | 1.2886950 | 1.3070798 | 1.2987775 | 1.3199810 | 1.644839 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | colSums | 1.022460 | 1.037043 | 1.036601 | 1.031489 | 1.042006 | 1.169050 |
1 | colSums2 | 1.300096 | 1.310259 | 1.306115 | 1.299403 | 1.304436 | 1.420124 |
4 | apply+sum | 16.786868 | 16.937236 | 16.870718 | 16.788639 | 16.843045 | 20.070761 |
Table: Benchmarking of rowSums2(), .rowSums(), rowSums() and apply+sum() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 0.103800 | 0.1053270 | 0.1092996 | 0.1071950 | 0.1096705 | 0.148805 |
2 | .rowSums | 0.271360 | 0.2784505 | 0.2844060 | 0.2793865 | 0.2869725 | 0.333830 |
3 | rowSums | 0.273222 | 0.2805355 | 0.2893872 | 0.2838145 | 0.2966940 | 0.335396 |
4 | apply+sum | 1.268050 | 1.3040830 | 1.3567052 | 1.3238910 | 1.3614360 | 1.864570 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | .rowSums | 2.614258 | 2.643676 | 2.602078 | 2.606339 | 2.616679 | 2.243406 |
3 | rowSums | 2.632197 | 2.663472 | 2.647652 | 2.647647 | 2.705322 | 2.253930 |
4 | apply+sum | 12.216281 | 12.381279 | 12.412723 | 12.350305 | 12.413876 | 12.530291 |
Figure: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on integer+100x1000 data as well as rowSums2(), .rowSums(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2() and rowSums2() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 97.593 | 99.693 | 101.1929 | 100.5225 | 102.2280 | 116.382 |
2 | rowSums2 | 103.800 | 105.327 | 109.2996 | 107.1950 | 109.6705 | 148.805 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2 | 1.063601 | 1.056514 | 1.080111 | 1.066378 | 1.072803 | 1.278591 |
Figure: Benchmarking of colSums2() and rowSums2() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3199986 170.9 5709258 305.0 5709258 305.0
Vcells 6142029 46.9 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2 = colSums2(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), colSums = colSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3199980 170.9 5709258 305.0 5709258 305.0
Vcells 6192072 47.3 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2 = rowSums2(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), rowSums = rowSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 0.079430 | 0.0798290 | 0.0813971 | 0.0801585 | 0.0809085 | 0.112326 |
3 | colSums | 0.081147 | 0.0818435 | 0.0842066 | 0.0825235 | 0.0837060 | 0.156258 |
1 | colSums2 | 0.104633 | 0.1050895 | 0.1062148 | 0.1054080 | 0.1060155 | 0.120491 |
4 | apply+sum | 0.543041 | 0.5528160 | 0.5673520 | 0.5599640 | 0.5732780 | 0.678743 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | colSums | 1.021616 | 1.025235 | 1.034516 | 1.029504 | 1.034576 | 1.391112 |
1 | colSums2 | 1.317298 | 1.316433 | 1.304897 | 1.314995 | 1.310313 | 1.072690 |
4 | apply+sum | 6.836724 | 6.925002 | 6.970173 | 6.985710 | 7.085510 | 6.042617 |
Table: Benchmarking of rowSums2(), .rowSums(), rowSums() and apply+sum() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 0.113665 | 0.115278 | 0.1194711 | 0.1168145 | 0.1192320 | 0.212273 |
2 | .rowSums | 0.371720 | 0.372579 | 0.3741557 | 0.3729915 | 0.3743710 | 0.383320 |
3 | rowSums | 0.373165 | 0.374549 | 0.3768583 | 0.3751790 | 0.3763885 | 0.419846 |
4 | apply+sum | 0.565210 | 0.582445 | 0.5967722 | 0.5906430 | 0.6047140 | 0.704273 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | .rowSums | 3.270312 | 3.232004 | 3.131767 | 3.193024 | 3.139853 | 1.805788 |
3 | rowSums | 3.283025 | 3.249093 | 3.154388 | 3.211750 | 3.156774 | 1.977859 |
4 | apply+sum | 4.972595 | 5.052525 | 4.995116 | 5.056247 | 5.071743 | 3.317770 |
Figure: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on integer+1000x100 data as well as rowSums2(), .rowSums(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2() and rowSums2() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 104.633 | 105.0895 | 106.2148 | 105.4080 | 106.0155 | 120.491 |
2 | rowSums2 | 113.665 | 115.2780 | 119.4711 | 116.8145 | 119.2320 | 212.273 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2 | 1.086321 | 1.096951 | 1.124806 | 1.108213 | 1.124666 | 1.761733 |
Figure: Benchmarking of colSums2() and rowSums2() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3200236 171.0 5709258 305.0 5709258 305.0
Vcells 6257960 47.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2 = colSums2(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), colSums = colSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3200218 171.0 5709258 305.0 5709258 305.0
Vcells 6258083 47.8 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2 = rowSums2(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), rowSums = rowSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 0.001125 | 0.0014110 | 0.0018459 | 0.0018445 | 0.0019880 | 0.010989 |
2 | .colSums | 0.001679 | 0.0019315 | 0.0022807 | 0.0021570 | 0.0024595 | 0.010393 |
3 | colSums | 0.002981 | 0.0033455 | 0.0039332 | 0.0037940 | 0.0043160 | 0.012126 |
4 | apply+sum | 0.020129 | 0.0214210 | 0.0226355 | 0.0217665 | 0.0222410 | 0.084903 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | .colSums | 1.492444 | 1.368887 | 1.235563 | 1.169423 | 1.237173 | 0.9457639 |
3 | colSums | 2.649778 | 2.371014 | 2.130780 | 2.056926 | 2.171026 | 1.1034671 |
4 | apply+sum | 17.892444 | 15.181432 | 12.262471 | 11.800759 | 11.187626 | 7.7261807 |
Table: Benchmarking of rowSums2(), .rowSums(), rowSums() and apply+sum() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .rowSums | 0.001290 | 0.0014620 | 0.0017062 | 0.0016700 | 0.0017970 | 0.007053 |
1 | rowSums2 | 0.001122 | 0.0013765 | 0.0017429 | 0.0016945 | 0.0018500 | 0.011662 |
3 | rowSums | 0.002451 | 0.0028405 | 0.0036099 | 0.0032490 | 0.0034915 | 0.043073 |
4 | apply+sum | 0.019615 | 0.0205245 | 0.0215753 | 0.0208405 | 0.0213040 | 0.077098 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .rowSums | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | rowSums2 | 0.8697674 | 0.9415185 | 1.021497 | 1.014671 | 1.029494 | 1.653481 |
3 | rowSums | 1.9000000 | 1.9428865 | 2.115704 | 1.945509 | 1.942961 | 6.107047 |
4 | apply+sum | 15.2054264 | 14.0386457 | 12.644882 | 12.479341 | 11.855314 | 10.931235 |
Figure: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on double+10x10 data as well as rowSums2(), .rowSums(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2() and rowSums2() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2 | 1.122 | 1.3765 | 1.74293 | 1.6945 | 1.850 | 11.662 |
1 | colSums2 | 1.125 | 1.4110 | 1.84592 | 1.8445 | 1.988 | 10.989 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colSums2 | 1.002674 | 1.025064 | 1.05909 | 1.088522 | 1.074595 | 0.9422912 |
Figure: Benchmarking of colSums2() and rowSums2() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3200456 171.0 5709258 305.0 5709258 305.0
Vcells 6258975 47.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2 = colSums2(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), colSums = colSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3200447 171.0 5709258 305.0 5709258 305.0
Vcells 6269013 47.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2 = rowSums2(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), rowSums = rowSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 0.008481 | 0.0094420 | 0.0132974 | 0.0100500 | 0.0154795 | 0.086337 |
1 | colSums2 | 0.011157 | 0.0122005 | 0.0158498 | 0.0129775 | 0.0166145 | 0.114645 |
3 | colSums | 0.009952 | 0.0115635 | 0.0157287 | 0.0130725 | 0.0189935 | 0.045543 |
4 | apply+sum | 0.188215 | 0.2021885 | 0.2483000 | 0.2126865 | 0.2633415 | 0.930026 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colSums2 | 1.315529 | 1.292152 | 1.191945 | 1.291294 | 1.073323 | 1.3278780 |
3 | colSums | 1.173447 | 1.224688 | 1.182834 | 1.300746 | 1.227010 | 0.5275027 |
4 | apply+sum | 22.192548 | 21.413736 | 18.672754 | 21.162836 | 17.012274 | 10.7720444 |
Table: Benchmarking of rowSums2(), .rowSums(), rowSums() and apply+sum() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 0.011288 | 0.0117185 | 0.0124961 | 0.0121915 | 0.0125340 | 0.022394 |
2 | .rowSums | 0.019842 | 0.0202185 | 0.0215277 | 0.0203770 | 0.0206760 | 0.058601 |
3 | rowSums | 0.021223 | 0.0217120 | 0.0234411 | 0.0223080 | 0.0227835 | 0.069166 |
4 | apply+sum | 0.144447 | 0.1476880 | 0.1602648 | 0.1501135 | 0.1580005 | 0.296495 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | .rowSums | 1.757796 | 1.725349 | 1.722759 | 1.67141 | 1.649593 | 2.616817 |
3 | rowSums | 1.880138 | 1.852797 | 1.875876 | 1.82980 | 1.817736 | 3.088595 |
4 | apply+sum | 12.796510 | 12.602978 | 12.825207 | 12.31296 | 12.605752 | 13.239930 |
Figure: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on double+100x100 data as well as rowSums2(), .rowSums(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2() and rowSums2() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2 | 11.288 | 11.7185 | 12.49608 | 12.1915 | 12.5340 | 22.394 |
1 | colSums2 | 11.157 | 12.2005 | 15.84983 | 12.9775 | 16.6145 | 114.645 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colSums2 | 0.9883948 | 1.041132 | 1.268384 | 1.064471 | 1.325554 | 5.119452 |
Figure: Benchmarking of colSums2() and rowSums2() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3200682 171.0 5709258 305.0 5709258 305.0
Vcells 6260076 47.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2 = colSums2(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), colSums = colSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3200673 171.0 5709258 305.0 5709258 305.0
Vcells 6270114 47.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2 = rowSums2(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), rowSums = rowSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 0.009503 | 0.0098125 | 0.0105194 | 0.010159 | 0.0104955 | 0.035338 |
3 | colSums | 0.010987 | 0.0114515 | 0.0123062 | 0.012100 | 0.0126045 | 0.032284 |
1 | colSums2 | 0.012387 | 0.0129675 | 0.0134194 | 0.013206 | 0.0134815 | 0.029126 |
4 | apply+sum | 0.116068 | 0.1181620 | 0.1211660 | 0.119921 | 0.1214535 | 0.215851 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
3 | colSums | 1.156161 | 1.167032 | 1.169860 | 1.191062 | 1.200943 | 0.9135775 |
1 | colSums2 | 1.303483 | 1.321529 | 1.275679 | 1.299931 | 1.284503 | 0.8242119 |
4 | apply+sum | 12.213827 | 12.041987 | 11.518340 | 11.804410 | 11.571959 | 6.1081838 |
Table: Benchmarking of rowSums2(), .rowSums(), rowSums() and apply+sum() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 0.012830 | 0.0136550 | 0.0165813 | 0.0142095 | 0.0168490 | 0.047365 |
2 | .rowSums | 0.020297 | 0.0207485 | 0.0244345 | 0.0213450 | 0.0229405 | 0.068766 |
3 | rowSums | 0.021788 | 0.0227020 | 0.0259081 | 0.0237630 | 0.0249980 | 0.068706 |
4 | apply+sum | 0.076028 | 0.0779730 | 0.1006974 | 0.0808515 | 0.0965640 | 0.340523 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | .rowSums | 1.581995 | 1.519480 | 1.473618 | 1.502164 | 1.361535 | 1.451831 |
3 | rowSums | 1.698207 | 1.662541 | 1.562492 | 1.672332 | 1.483649 | 1.450565 |
4 | apply+sum | 5.925799 | 5.710216 | 6.072958 | 5.689961 | 5.731141 | 7.189338 |
Figure: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on double+1000x10 data as well as rowSums2(), .rowSums(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2() and rowSums2() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 12.387 | 12.9675 | 13.41938 | 13.2060 | 13.4815 | 29.126 |
2 | rowSums2 | 12.830 | 13.6550 | 16.58128 | 14.2095 | 16.8490 | 47.365 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | rowSums2 | 1.035763 | 1.053017 | 1.235622 | 1.075988 | 1.249787 | 1.62621 |
Figure: Benchmarking of colSums2() and rowSums2() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3200903 171.0 5709258 305.0 5709258 305.0
Vcells 6260222 47.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2 = colSums2(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), colSums = colSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3200894 171.0 5709258 305.0 5709258 305.0
Vcells 6270260 47.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2 = rowSums2(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), rowSums = rowSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 0.009544 | 0.0101400 | 0.0112099 | 0.0104835 | 0.0111480 | 0.041096 |
3 | colSums | 0.011269 | 0.0121530 | 0.0136204 | 0.0127455 | 0.0141990 | 0.029504 |
1 | colSums2 | 0.012166 | 0.0131125 | 0.0141914 | 0.0136505 | 0.0143675 | 0.029272 |
4 | apply+sum | 0.795365 | 0.8482970 | 0.8751510 | 0.8732355 | 0.8967020 | 1.100357 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
3 | colSums | 1.180742 | 1.198521 | 1.215033 | 1.215768 | 1.273681 | 0.7179288 |
1 | colSums2 | 1.274728 | 1.293146 | 1.265970 | 1.302094 | 1.288796 | 0.7122834 |
4 | apply+sum | 83.336651 | 83.658481 | 78.069473 | 83.296180 | 80.436132 | 26.7752823 |
Table: Benchmarking of rowSums2(), .rowSums(), rowSums() and apply+sum() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 0.012403 | 0.013533 | 0.0149897 | 0.0140480 | 0.0149865 | 0.027415 |
2 | .rowSums | 0.018839 | 0.019744 | 0.0205335 | 0.0203010 | 0.0208505 | 0.027395 |
3 | rowSums | 0.019771 | 0.021400 | 0.0228646 | 0.0221615 | 0.0233765 | 0.036762 |
4 | apply+sum | 0.790190 | 0.864529 | 0.8862299 | 0.8822150 | 0.9011230 | 1.170931 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | .rowSums | 1.518907 | 1.458952 | 1.369838 | 1.445117 | 1.391285 | 0.9992705 |
3 | rowSums | 1.594050 | 1.581320 | 1.525353 | 1.577556 | 1.559837 | 1.3409447 |
4 | apply+sum | 63.709586 | 63.883027 | 59.122432 | 62.800043 | 60.128983 | 42.7113259 |
Figure: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on double+10x1000 data as well as rowSums2(), .rowSums(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2() and rowSums2() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 12.166 | 13.1125 | 14.19140 | 13.6505 | 14.3675 | 29.272 |
2 | rowSums2 | 12.403 | 13.5330 | 14.98974 | 14.0480 | 14.9865 | 27.415 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 |
2 | rowSums2 | 1.019481 | 1.032069 | 1.056255 | 1.02912 | 1.043083 | 0.9365605 |
Figure: Benchmarking of colSums2() and rowSums2() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3201123 171.0 5709258 305.0 5709258 305.0
Vcells 6261502 47.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2 = colSums2(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), colSums = colSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3201117 171.0 5709258 305.0 5709258 305.0
Vcells 6361545 48.6 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2 = rowSums2(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), rowSums = rowSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 0.065601 | 0.0736915 | 0.0872300 | 0.078597 | 0.0878205 | 0.173754 |
3 | colSums | 0.068018 | 0.0759150 | 0.0879334 | 0.079849 | 0.0918110 | 0.157878 |
1 | colSums2 | 0.099009 | 0.1106685 | 0.1192029 | 0.114086 | 0.1225600 | 0.180922 |
4 | apply+sum | 1.708269 | 1.9040275 | 2.3091431 | 2.021267 | 2.1891150 | 15.793835 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
3 | colSums | 1.036844 | 1.030173 | 1.008064 | 1.015929 | 1.045439 | 0.9086294 |
1 | colSums2 | 1.509260 | 1.501781 | 1.366536 | 1.451531 | 1.395574 | 1.0412537 |
4 | apply+sum | 26.040289 | 25.837817 | 26.471895 | 25.716847 | 24.927152 | 90.8976772 |
Table: Benchmarking of rowSums2(), .rowSums(), rowSums() and apply+sum() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 0.105944 | 0.1089645 | 0.1166479 | 0.1118535 | 0.1148025 | 0.232180 |
2 | .rowSums | 0.171737 | 0.1853725 | 0.1955227 | 0.1904550 | 0.1948960 | 0.276480 |
3 | rowSums | 0.179382 | 0.1836980 | 0.1924062 | 0.1909760 | 0.1927005 | 0.261175 |
4 | apply+sum | 1.309472 | 1.3688630 | 1.5825294 | 1.3847540 | 1.4315730 | 15.149573 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | .rowSums | 1.621017 | 1.701219 | 1.676179 | 1.702718 | 1.697663 | 1.190800 |
3 | rowSums | 1.693178 | 1.685852 | 1.649461 | 1.707376 | 1.678539 | 1.124882 |
4 | apply+sum | 12.360039 | 12.562468 | 13.566721 | 12.380069 | 12.469876 | 65.249259 |
Figure: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on double+100x1000 data as well as rowSums2(), .rowSums(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2() and rowSums2() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2 | 105.944 | 108.9645 | 116.6479 | 111.8535 | 114.8025 | 232.180 |
1 | colSums2 | 99.009 | 110.6685 | 119.2029 | 114.0860 | 122.5600 | 180.922 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colSums2 | 0.9345409 | 1.015638 | 1.021904 | 1.019959 | 1.067573 | 0.7792316 |
Figure: Benchmarking of colSums2() and rowSums2() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3201358 171.0 5709258 305.0 5709258 305.0
Vcells 6261664 47.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2 = colSums2(X, na.rm = FALSE), .colSums = .colSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), colSums = colSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 2L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3201349 171.0 5709258 305.0 5709258 305.0
Vcells 6361702 48.6 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2 = rowSums2(X, na.rm = FALSE), .rowSums = .rowSums(X, m = nrow(X),
+ n = ncol(X), na.rm = FALSE), rowSums = rowSums(X, na.rm = FALSE), `apply+sum` = apply(X, MARGIN = 1L,
+ FUN = sum, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 0.077325 | 0.0781145 | 0.0829543 | 0.0792585 | 0.086708 | 0.107558 |
3 | colSums | 0.079287 | 0.0801690 | 0.0853740 | 0.0817965 | 0.089144 | 0.115481 |
1 | colSums2 | 0.104967 | 0.1055385 | 0.1126490 | 0.1071660 | 0.120821 | 0.143122 |
4 | apply+sum | 0.591068 | 0.6022620 | 0.7025576 | 0.6200985 | 0.652509 | 7.226098 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | .colSums | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | colSums | 1.025373 | 1.026301 | 1.029168 | 1.032022 | 1.028094 | 1.073663 |
1 | colSums2 | 1.357478 | 1.351074 | 1.357964 | 1.352107 | 1.393424 | 1.330650 |
4 | apply+sum | 7.643944 | 7.709990 | 8.469209 | 7.823748 | 7.525361 | 67.183269 |
Table: Benchmarking of rowSums2(), .rowSums(), rowSums() and apply+sum() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 0.108654 | 0.1114860 | 0.1175326 | 0.1143585 | 0.1189145 | 0.167381 |
2 | .rowSums | 0.187866 | 0.1929845 | 0.2002140 | 0.1954265 | 0.2032060 | 0.244465 |
3 | rowSums | 0.189519 | 0.1935800 | 0.2028186 | 0.1980415 | 0.2049410 | 0.279904 |
4 | apply+sum | 0.626604 | 0.6531920 | 0.7608880 | 0.6655130 | 0.7198745 | 7.481785 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | .rowSums | 1.729030 | 1.731020 | 1.703477 | 1.708894 | 1.708841 | 1.460530 |
3 | rowSums | 1.744243 | 1.736361 | 1.725638 | 1.731760 | 1.723432 | 1.672257 |
4 | apply+sum | 5.766967 | 5.858960 | 6.473849 | 5.819532 | 6.053715 | 44.699129 |
Figure: Benchmarking of colSums2(), .colSums(), colSums() and apply+sum() on double+1000x100 data as well as rowSums2(), .rowSums(), rowSums() and apply+sum() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2() and rowSums2() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 104.967 | 105.5385 | 112.6489 | 107.1660 | 120.8210 | 143.122 |
2 | rowSums2 | 108.654 | 111.4860 | 117.5326 | 114.3585 | 118.9145 | 167.381 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.000000 |
2 | rowSums2 | 1.035125 | 1.056354 | 1.043352 | 1.067116 | 0.9842205 | 1.169499 |
Figure: Benchmarking of colSums2() and rowSums2() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 27.73 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colSums2')
Copyright Henrik Bengtsson. Last updated on 2019-09-10 20:53:36 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>