-
Notifications
You must be signed in to change notification settings - Fork 34
colRowTabulates
matrixStats: Benchmark report
This report benchmark the performance of colTabulates() and rowTabulates() against alternative methods.
- ???
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "integer", range = c(-10, 10))
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3208969 171.4 5709258 305.0 5709258 305.0
Vcells 6387840 48.8 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3207288 171.3 5709258 305.0 5709258 305.0
Vcells 6382777 48.7 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 0.097305 | 0.0985175 | 0.100785 | 0.099041 | 0.0997155 | 0.230715 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
Table: Benchmarking of rowTabulates() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowTabulates | 0.0947 | 0.095504 | 0.0980804 | 0.096104 | 0.096741 | 0.227335 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
Figure: Benchmarking of colTabulates() on 10x10 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colTabulates() and rowTabulates() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowTabulates | 94.700 | 95.5040 | 98.08044 | 96.104 | 96.7410 | 227.335 |
1 | colTabulates | 97.305 | 98.5175 | 100.78495 | 99.041 | 99.7155 | 230.715 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowTabulates | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colTabulates | 1.027508 | 1.031554 | 1.027574 | 1.030561 | 1.030747 | 1.014868 |
Figure: Benchmarking of colTabulates() and rowTabulates() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3205796 171.3 5709258 305.0 5709258 305.0
Vcells 6188333 47.3 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3205790 171.3 5709258 305.0 5709258 305.0
Vcells 6193376 47.3 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 0.398019 | 0.4012145 | 0.4066294 | 0.403242 | 0.4084285 | 0.535625 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
Table: Benchmarking of rowTabulates() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowTabulates | 0.456053 | 0.4607885 | 0.4757639 | 0.4671985 | 0.472886 | 0.690054 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
Figure: Benchmarking of colTabulates() on 100x100 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colTabulates() and rowTabulates() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 398.019 | 401.2145 | 406.6294 | 403.2420 | 408.4285 | 535.625 |
2 | rowTabulates | 456.053 | 460.7885 | 475.7639 | 467.1985 | 472.8860 | 690.054 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowTabulates | 1.145807 | 1.148484 | 1.170018 | 1.158606 | 1.157818 | 1.288315 |
Figure: Benchmarking of colTabulates() and rowTabulates() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3206509 171.3 5709258 305.0 5709258 305.0
Vcells 6191627 47.3 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3206500 171.3 5709258 305.0 5709258 305.0
Vcells 6196665 47.3 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 0.37314 | 0.3751665 | 0.3802066 | 0.377041 | 0.381153 | 0.50368 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
Table: Benchmarking of rowTabulates() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowTabulates | 0.461854 | 0.469589 | 0.4768716 | 0.4736355 | 0.4802825 | 0.639372 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
Figure: Benchmarking of colTabulates() on 1000x10 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colTabulates() and rowTabulates() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 373.140 | 375.1665 | 380.2066 | 377.0410 | 381.1530 | 503.680 |
2 | rowTabulates | 461.854 | 469.5890 | 476.8716 | 473.6355 | 480.2825 | 639.372 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowTabulates | 1.23775 | 1.251682 | 1.254244 | 1.256191 | 1.260078 | 1.269401 |
Figure: Benchmarking of colTabulates() and rowTabulates() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3206677 171.3 5709258 305.0 5709258 305.0
Vcells 6192196 47.3 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3206671 171.3 5709258 305.0 5709258 305.0
Vcells 6197239 47.3 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 0.480075 | 0.486541 | 0.5151467 | 0.500231 | 0.5298665 | 0.825429 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
Table: Benchmarking of rowTabulates() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowTabulates | 0.488855 | 0.499118 | 0.5067292 | 0.5035765 | 0.508941 | 0.628956 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
Figure: Benchmarking of colTabulates() on 10x1000 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colTabulates() and rowTabulates() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 480.075 | 486.541 | 515.1467 | 500.2310 | 529.8665 | 825.429 |
2 | rowTabulates | 488.855 | 499.118 | 506.7292 | 503.5765 | 508.9410 | 628.956 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 1.000000 | 1.00000 | 1.00000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowTabulates | 1.018289 | 1.02585 | 0.98366 | 1.006688 | 0.960508 | 0.7619747 |
Figure: Benchmarking of colTabulates() and rowTabulates() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3206848 171.3 5709258 305.0 5709258 305.0
Vcells 6192610 47.3 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3206842 171.3 5709258 305.0 5709258 305.0
Vcells 6242653 47.7 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 2.951937 | 3.346852 | 3.654082 | 3.549232 | 3.695155 | 12.4183 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
Table: Benchmarking of rowTabulates() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowTabulates | 3.421477 | 3.654142 | 3.837853 | 3.700607 | 3.787078 | 10.39184 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
Figure: Benchmarking of colTabulates() on 100x1000 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colTabulates() and rowTabulates() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 2.951937 | 3.346852 | 3.654082 | 3.549232 | 3.695155 | 12.41830 |
2 | rowTabulates | 3.421477 | 3.654142 | 3.837853 | 3.700607 | 3.787078 | 10.39184 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 |
2 | rowTabulates | 1.159062 | 1.091815 | 1.050292 | 1.04265 | 1.024877 | 0.8368168 |
Figure: Benchmarking of colTabulates() and rowTabulates() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3207019 171.3 5709258 305.0 5709258 305.0
Vcells 6193080 47.3 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colTabulates = colTabulates(X, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3207013 171.3 5709258 305.0 5709258 305.0
Vcells 6243123 47.7 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowTabulates = rowTabulates(X, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colTabulates() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 2.744159 | 3.067887 | 3.254978 | 3.185613 | 3.323376 | 13.0348 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
Table: Benchmarking of rowTabulates() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowTabulates | 3.512745 | 3.794685 | 4.023299 | 3.829916 | 4.242972 | 10.3594 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowTabulates | 1 | 1 | 1 | 1 | 1 | 1 |
Figure: Benchmarking of colTabulates() on 1000x100 data as well as rowTabulates() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colTabulates() and rowTabulates() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 2.744159 | 3.067887 | 3.254978 | 3.185613 | 3.323376 | 13.0348 |
2 | rowTabulates | 3.512745 | 3.794685 | 4.023299 | 3.829916 | 4.242972 | 10.3594 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colTabulates | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowTabulates | 1.280081 | 1.236905 | 1.236045 | 1.202254 | 1.276706 | 0.7947496 |
Figure: Benchmarking of colTabulates() and rowTabulates() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 13.14 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colTabulates')
Copyright Henrik Bengtsson. Last updated on 2019-09-10 20:54:07 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>