-
Notifications
You must be signed in to change notification settings - Fork 34
colRowAnyMissings_subset
matrixStats: Benchmark report
This report benchmark the performance of colAnyMissings() and rowAnyMissings() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3065936 163.8 5709258 305.0 5709258 305.0
Vcells 5341036 40.8 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3065230 163.8 5709258 305.0 5709258 305.0
Vcells 5339141 40.8 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 0.001909 | 0.0019595 | 0.0037601 | 0.0020160 | 0.0021555 | 0.170367 |
2 | colAnyMissings(X, rows, cols) | 0.002069 | 0.0021475 | 0.0022611 | 0.0021930 | 0.0023560 | 0.003318 |
3 | colAnyMissings(X[rows, cols]) | 0.002522 | 0.0027580 | 0.0029657 | 0.0028885 | 0.0030180 | 0.007057 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colAnyMissings(X, rows, cols) | 1.083813 | 1.095943 | 0.6013409 | 1.087798 | 1.093018 | 0.0194756 |
3 | colAnyMissings(X[rows, cols]) | 1.321111 | 1.407502 | 0.7887252 | 1.432788 | 1.400139 | 0.0414223 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 0.001856 | 0.0019250 | 0.0020304 | 0.0019705 | 0.0021025 | 0.003570 |
2 | rowAnyMissings(X, cols, rows) | 0.002044 | 0.0021135 | 0.0041019 | 0.0021665 | 0.0023205 | 0.188377 |
3 | rowAnyMissings(X[cols, rows]) | 0.002513 | 0.0026915 | 0.0029238 | 0.0028200 | 0.0029870 | 0.006586 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnyMissings(X, cols, rows) | 1.101293 | 1.097922 | 2.020217 | 1.099467 | 1.103686 | 52.766667 |
3 | rowAnyMissings(X[cols, rows]) | 1.353987 | 1.398182 | 1.439971 | 1.431109 | 1.420690 | 1.844818 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+10x10 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowAnyMissings_X_S | 1.856 | 1.9250 | 2.03043 | 1.9705 | 2.1025 | 3.570 |
1 | colAnyMissings_X_S | 1.909 | 1.9595 | 3.76008 | 2.0160 | 2.1555 | 170.367 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
1 | colAnyMissings_X_S | 1.028556 | 1.017922 | 1.851864 | 1.023091 | 1.025208 | 47.72185 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3064172 163.7 5709258 305.0 5709258 305.0
Vcells 5173566 39.5 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3064166 163.7 5709258 305.0 5709258 305.0
Vcells 5178649 39.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 0.003790 | 0.0041370 | 0.0043720 | 0.0043335 | 0.0044730 | 0.008098 |
2 | colAnyMissings(X, rows, cols) | 0.005891 | 0.0061995 | 0.0065557 | 0.0064130 | 0.0066940 | 0.010122 |
3 | colAnyMissings(X[rows, cols]) | 0.011714 | 0.0120525 | 0.0129000 | 0.0122175 | 0.0123705 | 0.064254 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnyMissings(X, rows, cols) | 1.554354 | 1.498550 | 1.499486 | 1.479866 | 1.496535 | 1.249938 |
3 | colAnyMissings(X[rows, cols]) | 3.090765 | 2.913343 | 2.950638 | 2.819315 | 2.765594 | 7.934552 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 0.005676 | 0.0060965 | 0.0062394 | 0.0062255 | 0.0063330 | 0.008932 |
2 | rowAnyMissings(X, cols, rows) | 0.006729 | 0.0070995 | 0.0072964 | 0.0072915 | 0.0074340 | 0.008109 |
3 | rowAnyMissings(X[cols, rows]) | 0.013574 | 0.0138655 | 0.0147486 | 0.0140695 | 0.0142865 | 0.065044 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnyMissings(X, cols, rows) | 1.185518 | 1.164521 | 1.169415 | 1.171231 | 1.173851 | 0.9078594 |
3 | rowAnyMissings(X[cols, rows]) | 2.391473 | 2.274338 | 2.363802 | 2.259979 | 2.255882 | 7.2821317 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+100x100 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 3.790 | 4.1370 | 4.37195 | 4.3335 | 4.473 | 8.098 |
2 | rowAnyMissings_X_S | 5.676 | 6.0965 | 6.23936 | 6.2255 | 6.333 | 8.932 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnyMissings_X_S | 1.497625 | 1.473652 | 1.427134 | 1.436599 | 1.415828 | 1.102988 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3064927 163.7 5709258 305.0 5709258 305.0
Vcells 5177649 39.6 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3064918 163.7 5709258 305.0 5709258 305.0
Vcells 5182727 39.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 0.003337 | 0.0034765 | 0.0036353 | 0.0035440 | 0.0037090 | 0.007212 |
2 | colAnyMissings(X, rows, cols) | 0.005597 | 0.0057760 | 0.0063044 | 0.0058625 | 0.0059715 | 0.047710 |
3 | colAnyMissings(X[rows, cols]) | 0.011065 | 0.0112440 | 0.0116576 | 0.0114140 | 0.0115550 | 0.021089 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnyMissings(X, rows, cols) | 1.677255 | 1.661441 | 1.734219 | 1.654204 | 1.610003 | 6.615363 |
3 | colAnyMissings(X[rows, cols]) | 3.315853 | 3.234287 | 3.206809 | 3.220655 | 3.115395 | 2.924154 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 0.005047 | 0.005165 | 0.0057156 | 0.0052435 | 0.0053455 | 0.048233 |
2 | rowAnyMissings(X, cols, rows) | 0.007300 | 0.007551 | 0.0078297 | 0.0076545 | 0.0078965 | 0.020284 |
3 | rowAnyMissings(X[cols, rows]) | 0.013611 | 0.013890 | 0.0144229 | 0.0140400 | 0.0142650 | 0.031846 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnyMissings(X, cols, rows) | 1.446404 | 1.461955 | 1.369894 | 1.459807 | 1.477224 | 0.4205420 |
3 | rowAnyMissings(X[cols, rows]) | 2.696850 | 2.689255 | 2.523438 | 2.677601 | 2.668600 | 0.6602534 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+1000x10 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 3.337 | 3.4765 | 3.63528 | 3.5440 | 3.7090 | 7.212 |
2 | rowAnyMissings_X_S | 5.047 | 5.1650 | 5.71556 | 5.2435 | 5.3455 | 48.233 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnyMissings_X_S | 1.512436 | 1.48569 | 1.572248 | 1.479543 | 1.441224 | 6.687881 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3065130 163.7 5709258 305.0 5709258 305.0
Vcells 5178556 39.6 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3065124 163.7 5709258 305.0 5709258 305.0
Vcells 5183639 39.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 0.005520 | 0.005975 | 0.0064180 | 0.0063365 | 0.0066215 | 0.010772 |
2 | colAnyMissings(X, rows, cols) | 0.008137 | 0.008464 | 0.0095423 | 0.0087120 | 0.0090540 | 0.054838 |
3 | colAnyMissings(X[rows, cols]) | 0.014095 | 0.014756 | 0.0155108 | 0.0150345 | 0.0155315 | 0.027018 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnyMissings(X, rows, cols) | 1.474094 | 1.416569 | 1.486790 | 1.374891 | 1.367364 | 5.090791 |
3 | colAnyMissings(X[rows, cols]) | 2.553442 | 2.469623 | 2.416756 | 2.372682 | 2.345617 | 2.508169 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 0.005640 | 0.0059070 | 0.0063388 | 0.0061085 | 0.0062825 | 0.023325 |
2 | rowAnyMissings(X, cols, rows) | 0.007668 | 0.0081840 | 0.0083983 | 0.0083160 | 0.0085730 | 0.009478 |
3 | rowAnyMissings(X[cols, rows]) | 0.012934 | 0.0132615 | 0.0136877 | 0.0134640 | 0.0137020 | 0.026768 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnyMissings(X, cols, rows) | 1.359574 | 1.385475 | 1.324898 | 1.361382 | 1.364584 | 0.4063451 |
3 | rowAnyMissings(X[cols, rows]) | 2.293262 | 2.245048 | 2.159350 | 2.204142 | 2.180979 | 1.1476099 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+10x1000 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowAnyMissings_X_S | 5.64 | 5.907 | 6.33882 | 6.1085 | 6.2825 | 23.325 |
1 | colAnyMissings_X_S | 5.52 | 5.975 | 6.41804 | 6.3365 | 6.6215 | 10.772 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowAnyMissings_X_S | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colAnyMissings_X_S | 0.9787234 | 1.011512 | 1.012498 | 1.037325 | 1.053959 | 0.4618221 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3065329 163.8 5709258 305.0 5709258 305.0
Vcells 5201233 39.7 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3065323 163.8 5709258 305.0 5709258 305.0
Vcells 5251316 40.1 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 0.017729 | 0.0180670 | 0.0185983 | 0.0182870 | 0.018740 | 0.026048 |
2 | colAnyMissings(X, rows, cols) | 0.039803 | 0.0402135 | 0.0414919 | 0.0404055 | 0.040672 | 0.131804 |
3 | colAnyMissings(X[rows, cols]) | 0.089306 | 0.0901435 | 0.0912248 | 0.0905265 | 0.091298 | 0.109593 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | colAnyMissings(X, rows, cols) | 2.245079 | 2.225798 | 2.230946 | 2.20952 | 2.170331 | 5.060043 |
3 | colAnyMissings(X[rows, cols]) | 5.037284 | 4.989401 | 4.905000 | 4.95032 | 4.871825 | 4.207348 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 0.029521 | 0.029851 | 0.0309257 | 0.0301030 | 0.0305360 | 0.068836 |
2 | rowAnyMissings(X, cols, rows) | 0.047036 | 0.048007 | 0.0486352 | 0.0485220 | 0.0488455 | 0.061143 |
3 | rowAnyMissings(X[cols, rows]) | 0.092687 | 0.093354 | 0.0947319 | 0.0936185 | 0.0940835 | 0.155660 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnyMissings(X, cols, rows) | 1.593306 | 1.608221 | 1.572648 | 1.611866 | 1.599604 | 0.8882416 |
3 | rowAnyMissings(X[cols, rows]) | 3.139697 | 3.127332 | 3.063210 | 3.109939 | 3.081068 | 2.2613168 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+100x1000 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 17.729 | 18.067 | 18.59834 | 18.287 | 18.740 | 26.048 |
2 | rowAnyMissings_X_S | 29.521 | 29.851 | 30.92570 | 30.103 | 30.536 | 68.836 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.00000 |
2 | rowAnyMissings_X_S | 1.665125 | 1.652239 | 1.66282 | 1.646142 | 1.629456 | 2.64266 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3065545 163.8 5709258 305.0 5709258 305.0
Vcells 5202044 39.7 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3065539 163.8 5709258 305.0 5709258 305.0
Vcells 5252127 40.1 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 0.016552 | 0.0170740 | 0.0175829 | 0.0172730 | 0.0174835 | 0.028990 |
2 | colAnyMissings(X, rows, cols) | 0.034511 | 0.0349505 | 0.0356907 | 0.0353990 | 0.0356475 | 0.066961 |
3 | colAnyMissings(X[rows, cols]) | 0.079512 | 0.0805000 | 0.0822047 | 0.0808285 | 0.0811980 | 0.174185 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnyMissings(X, rows, cols) | 2.085005 | 2.047001 | 2.029856 | 2.049383 | 2.038922 | 2.309797 |
3 | colAnyMissings(X[rows, cols]) | 4.803770 | 4.714771 | 4.675273 | 4.679471 | 4.644265 | 6.008451 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 0.035522 | 0.0381455 | 0.0384376 | 0.0383265 | 0.0385185 | 0.044317 |
2 | rowAnyMissings(X, cols, rows) | 0.048749 | 0.0495450 | 0.0498992 | 0.0497760 | 0.0502710 | 0.054800 |
3 | rowAnyMissings(X[cols, rows]) | 0.107349 | 0.1093065 | 0.1110342 | 0.1097290 | 0.1102325 | 0.218301 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnyMissings(X, cols, rows) | 1.372361 | 1.298843 | 1.298187 | 1.298736 | 1.305113 | 1.236546 |
3 | rowAnyMissings(X[cols, rows]) | 3.022043 | 2.865515 | 2.888685 | 2.863006 | 2.861807 | 4.925897 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on integer+1000x100 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 16.552 | 17.0740 | 17.58287 | 17.2730 | 17.4835 | 28.990 |
2 | rowAnyMissings_X_S | 35.522 | 38.1455 | 38.43761 | 38.3265 | 38.5185 | 44.317 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000 |
2 | rowAnyMissings_X_S | 2.146085 | 2.234128 | 2.186083 | 2.218868 | 2.203134 | 1.5287 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3065763 163.8 5709258 305.0 5709258 305.0
Vcells 5293175 40.4 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3065748 163.8 5709258 305.0 5709258 305.0
Vcells 5293343 40.4 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 0.001948 | 0.0020155 | 0.0024903 | 0.0020750 | 0.0022520 | 0.036719 |
2 | colAnyMissings(X, rows, cols) | 0.002164 | 0.0022700 | 0.0024112 | 0.0023315 | 0.0024785 | 0.005347 |
3 | colAnyMissings(X[rows, cols]) | 0.002686 | 0.0029695 | 0.0031934 | 0.0030695 | 0.0032235 | 0.010134 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colAnyMissings(X, rows, cols) | 1.110883 | 1.126271 | 0.9682526 | 1.123614 | 1.100577 | 0.1456194 |
3 | colAnyMissings(X[rows, cols]) | 1.378850 | 1.473332 | 1.2823618 | 1.479277 | 1.431394 | 0.2759879 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 0.001837 | 0.0018920 | 0.0020309 | 0.0019375 | 0.0020740 | 0.004130 |
2 | rowAnyMissings(X, cols, rows) | 0.002025 | 0.0020890 | 0.0025987 | 0.0021775 | 0.0023310 | 0.039935 |
3 | rowAnyMissings(X[cols, rows]) | 0.002446 | 0.0026765 | 0.0029030 | 0.0027715 | 0.0029345 | 0.008181 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnyMissings(X, cols, rows) | 1.102341 | 1.104123 | 1.279616 | 1.123871 | 1.123915 | 9.669491 |
3 | rowAnyMissings(X[cols, rows]) | 1.331519 | 1.414641 | 1.429463 | 1.430452 | 1.414899 | 1.980872 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+10x10 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowAnyMissings_X_S | 1.837 | 1.8920 | 2.03086 | 1.9375 | 2.074 | 4.130 |
1 | colAnyMissings_X_S | 1.948 | 2.0155 | 2.49028 | 2.0750 | 2.252 | 36.719 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colAnyMissings_X_S | 1.060425 | 1.065275 | 1.226219 | 1.070968 | 1.085824 | 8.890799 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3065965 163.8 5709258 305.0 5709258 305.0
Vcells 5299161 40.5 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3065959 163.8 5709258 305.0 5709258 305.0
Vcells 5309244 40.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 0.004635 | 0.0049965 | 0.0052026 | 0.005118 | 0.0052700 | 0.009944 |
2 | colAnyMissings(X, rows, cols) | 0.007557 | 0.0079585 | 0.0083626 | 0.008119 | 0.0082595 | 0.020535 |
3 | colAnyMissings(X[rows, cols]) | 0.020516 | 0.0209150 | 0.0218574 | 0.021080 | 0.0213025 | 0.074657 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnyMissings(X, rows, cols) | 1.630421 | 1.592815 | 1.607395 | 1.586362 | 1.567268 | 2.065064 |
3 | colAnyMissings(X[rows, cols]) | 4.426322 | 4.185930 | 4.201261 | 4.118796 | 4.042220 | 7.507743 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 0.004956 | 0.0053805 | 0.0055589 | 0.0054995 | 0.0056570 | 0.009329 |
2 | rowAnyMissings(X, cols, rows) | 0.007678 | 0.0082480 | 0.0084524 | 0.0084380 | 0.0085520 | 0.012560 |
3 | rowAnyMissings(X[cols, rows]) | 0.012345 | 0.0129325 | 0.0136767 | 0.0131115 | 0.0133365 | 0.067858 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnyMissings(X, cols, rows) | 1.549233 | 1.532943 | 1.520507 | 1.534321 | 1.511755 | 1.346339 |
3 | rowAnyMissings(X[cols, rows]) | 2.490920 | 2.403587 | 2.460315 | 2.384126 | 2.357522 | 7.273877 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+100x100 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 4.635 | 4.9965 | 5.20259 | 5.1180 | 5.270 | 9.944 |
2 | rowAnyMissings_X_S | 4.956 | 5.3805 | 5.55891 | 5.4995 | 5.657 | 9.329 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnyMissings_X_S | 1.069256 | 1.076854 | 1.068489 | 1.074541 | 1.073435 | 0.9381537 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3066174 163.8 5709258 305.0 5709258 305.0
Vcells 5300620 40.5 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3066168 163.8 5709258 305.0 5709258 305.0
Vcells 5310703 40.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 0.004123 | 0.0043245 | 0.0045103 | 0.0044505 | 0.0045635 | 0.009336 |
2 | colAnyMissings(X, rows, cols) | 0.007219 | 0.0074250 | 0.0080249 | 0.0075595 | 0.0077200 | 0.052019 |
3 | colAnyMissings(X[rows, cols]) | 0.020077 | 0.0203155 | 0.0205638 | 0.0204295 | 0.0205430 | 0.028397 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnyMissings(X, rows, cols) | 1.750909 | 1.716962 | 1.779241 | 1.698573 | 1.691684 | 5.571872 |
3 | colAnyMissings(X[rows, cols]) | 4.869512 | 4.697768 | 4.559287 | 4.590383 | 4.501589 | 3.041667 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 0.004964 | 0.005149 | 0.0056016 | 0.0052620 | 0.0053795 | 0.034969 |
2 | rowAnyMissings(X, cols, rows) | 0.008852 | 0.009071 | 0.0096919 | 0.0092185 | 0.0093375 | 0.043440 |
3 | rowAnyMissings(X[cols, rows]) | 0.014473 | 0.014720 | 0.0150551 | 0.0148750 | 0.0150685 | 0.020760 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnyMissings(X, cols, rows) | 1.783239 | 1.761701 | 1.730213 | 1.751900 | 1.735756 | 1.2422431 |
3 | rowAnyMissings(X[cols, rows]) | 2.915592 | 2.858808 | 2.687663 | 2.826872 | 2.801097 | 0.5936687 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+1000x10 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 4.123 | 4.3245 | 4.51031 | 4.4505 | 4.5635 | 9.336 |
2 | rowAnyMissings_X_S | 4.964 | 5.1490 | 5.60157 | 5.2620 | 5.3795 | 34.969 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | rowAnyMissings_X_S | 1.203978 | 1.190658 | 1.241948 | 1.182339 | 1.17881 | 3.745608 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3066380 163.8 5709258 305.0 5709258 305.0
Vcells 5300757 40.5 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3066374 163.8 5709258 305.0 5709258 305.0
Vcells 5310840 40.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 0.005969 | 0.0062765 | 0.0065605 | 0.0064860 | 0.0067145 | 0.010070 |
2 | colAnyMissings(X, rows, cols) | 0.010097 | 0.0105125 | 0.0112457 | 0.0106505 | 0.0108455 | 0.061931 |
3 | colAnyMissings(X[rows, cols]) | 0.015696 | 0.0160795 | 0.0164897 | 0.0162740 | 0.0166875 | 0.022871 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnyMissings(X, rows, cols) | 1.691573 | 1.674898 | 1.714166 | 1.642075 | 1.615236 | 6.150050 |
3 | colAnyMissings(X[rows, cols]) | 2.629586 | 2.561858 | 2.513495 | 2.509097 | 2.485293 | 2.271202 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 0.005782 | 0.0061200 | 0.0065552 | 0.0062550 | 0.0064965 | 0.026689 |
2 | rowAnyMissings(X, cols, rows) | 0.008904 | 0.0092125 | 0.0095146 | 0.0094825 | 0.0096375 | 0.013595 |
3 | rowAnyMissings(X[cols, rows]) | 0.013701 | 0.0141780 | 0.0146415 | 0.0144220 | 0.0146505 | 0.028200 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnyMissings(X, cols, rows) | 1.539952 | 1.505310 | 1.451461 | 1.515987 | 1.483491 | 0.5093859 |
3 | rowAnyMissings(X[cols, rows]) | 2.369595 | 2.316667 | 2.233576 | 2.305675 | 2.255137 | 1.0566151 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+10x1000 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowAnyMissings_X_S | 5.782 | 6.1200 | 6.55518 | 6.255 | 6.4965 | 26.689 |
1 | colAnyMissings_X_S | 5.969 | 6.2765 | 6.56046 | 6.486 | 6.7145 | 10.070 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
1 | colAnyMissings_X_S | 1.032342 | 1.025572 | 1.000806 | 1.03693 | 1.033556 | 0.377309 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3066579 163.8 5709258 305.0 5709258 305.0
Vcells 5346251 40.8 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3066573 163.8 5709258 305.0 5709258 305.0
Vcells 5446334 41.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 0.025480 | 0.0261915 | 0.0272354 | 0.0265800 | 0.0271455 | 0.041650 |
2 | colAnyMissings(X, rows, cols) | 0.054747 | 0.0552735 | 0.0574334 | 0.0557780 | 0.0566840 | 0.176827 |
3 | colAnyMissings(X[rows, cols]) | 0.174996 | 0.1778275 | 0.1819949 | 0.1803625 | 0.1838225 | 0.246418 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnyMissings(X, rows, cols) | 2.148626 | 2.110360 | 2.108780 | 2.098495 | 2.088155 | 4.245546 |
3 | colAnyMissings(X[rows, cols]) | 6.867975 | 6.789512 | 6.682299 | 6.785647 | 6.771749 | 5.916399 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 0.030262 | 0.0309365 | 0.0345776 | 0.0319325 | 0.0349330 | 0.065825 |
2 | rowAnyMissings(X, cols, rows) | 0.061381 | 0.0617900 | 0.0659395 | 0.0624655 | 0.0653245 | 0.106891 |
3 | rowAnyMissings(X[cols, rows]) | 0.098686 | 0.1004695 | 0.1091581 | 0.1031840 | 0.1077745 | 0.179930 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnyMissings(X, cols, rows) | 2.028319 | 1.997317 | 1.907001 | 1.956173 | 1.869994 | 1.623866 |
3 | rowAnyMissings(X[cols, rows]) | 3.261054 | 3.247604 | 3.156904 | 3.231316 | 3.085177 | 2.733460 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+100x1000 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 25.480 | 26.1915 | 27.23537 | 26.5800 | 27.1455 | 41.650 |
2 | rowAnyMissings_X_S | 30.262 | 30.9365 | 34.57757 | 31.9325 | 34.9330 | 65.825 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | rowAnyMissings_X_S | 1.187677 | 1.181166 | 1.269583 | 1.201373 | 1.28688 | 1.580432 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3066795 163.8 5709258 305.0 5709258 305.0
Vcells 5346398 40.8 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colAnyMissings_X_S = colAnyMissings(X_S), `colAnyMissings(X, rows, cols)` = colAnyMissings(X,
+ rows = rows, cols = cols), `colAnyMissings(X[rows, cols])` = colAnyMissings(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3066789 163.8 5709258 305.0 5709258 305.0
Vcells 5446481 41.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowAnyMissings_X_S = rowAnyMissings(X_S), `rowAnyMissings(X, cols, rows)` = rowAnyMissings(X,
+ rows = cols, cols = rows), `rowAnyMissings(X[cols, rows])` = rowAnyMissings(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 0.024417 | 0.0246915 | 0.0255219 | 0.0249735 | 0.025424 | 0.035591 |
2 | colAnyMissings(X, rows, cols) | 0.050943 | 0.0512200 | 0.0521011 | 0.0513790 | 0.051570 | 0.071666 |
3 | colAnyMissings(X[rows, cols]) | 0.092693 | 0.0938050 | 0.0970414 | 0.0947325 | 0.095963 | 0.208158 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnyMissings(X, rows, cols) | 2.086374 | 2.074398 | 2.041423 | 2.057341 | 2.028398 | 2.013599 |
3 | colAnyMissings(X[rows, cols]) | 3.796248 | 3.799081 | 3.802277 | 3.793321 | 3.774504 | 5.848613 |
Table: Benchmarking of rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 0.029110 | 0.029517 | 0.0301505 | 0.0297810 | 0.0302135 | 0.043248 |
2 | rowAnyMissings(X, cols, rows) | 0.064299 | 0.064734 | 0.0654624 | 0.0649210 | 0.0650860 | 0.096013 |
3 | rowAnyMissings(X[cols, rows]) | 0.103788 | 0.105128 | 0.1087878 | 0.1060125 | 0.1075830 | 0.258804 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnyMissings(X, cols, rows) | 2.208829 | 2.193109 | 2.171188 | 2.179947 | 2.154203 | 2.220056 |
3 | rowAnyMissings(X[cols, rows]) | 3.565373 | 3.561609 | 3.608157 | 3.559736 | 3.560759 | 5.984184 |
Figure: Benchmarking of colAnyMissings_X_S(), colAnyMissings(X, rows, cols)() and colAnyMissings(X[rows, cols])() on double+1000x100 data as well as rowAnyMissings_X_S(), rowAnyMissings(X, cols, rows)() and rowAnyMissings(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 24.417 | 24.6915 | 25.52193 | 24.9735 | 25.4240 | 35.591 |
2 | rowAnyMissings_X_S | 29.110 | 29.5170 | 30.15050 | 29.7810 | 30.2135 | 43.248 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnyMissings_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnyMissings_X_S | 1.192202 | 1.195432 | 1.181357 | 1.192504 | 1.188385 | 1.215139 |
Figure: Benchmarking of colAnyMissings_X_S() and rowAnyMissings_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 22.31 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowAnyMissings_subset')
Copyright Dongcan Jiang. Last updated on 2019-09-10 20:35:21 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>