-
Notifications
You must be signed in to change notification settings - Fork 34
colRowDiffs
matrixStats: Benchmark report
This report benchmark the performance of colDiffs() and rowDiffs() against alternative methods.
- apply() + diff()
- apply() + diff2()
- diff()
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3118071 166.6 5709258 305.0 5709258 305.0
Vcells 5912815 45.2 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colDiffs = colDiffs(X), `apply+diff` = apply(X, MARGIN = 2L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 2L, FUN = diff2), diff = diff(X), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3116682 166.5 5709258 305.0 5709258 305.0
Vcells 5909095 45.1 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowDiffs = rowDiffs(X), `apply+diff` = apply(X, MARGIN = 1L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 1L, FUN = diff2), `diff + t` = diff(t(X)), unit = "ms")
Table: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 0.001270 | 0.0018170 | 0.0021640 | 0.0020725 | 0.0022715 | 0.011992 |
4 | diff | 0.006379 | 0.0071075 | 0.0086773 | 0.0082010 | 0.0086415 | 0.069156 |
3 | apply+diff2 | 0.033844 | 0.0344875 | 0.0359664 | 0.0348345 | 0.0353310 | 0.119466 |
2 | apply+diff | 0.067467 | 0.0683645 | 0.0703230 | 0.0691400 | 0.0697245 | 0.128498 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff | 5.022835 | 3.911668 | 4.00976 | 3.957057 | 3.804314 | 5.766845 |
3 | apply+diff2 | 26.648819 | 18.980462 | 16.62004 | 16.807961 | 15.554039 | 9.962141 |
2 | apply+diff | 53.123622 | 37.624931 | 32.49617 | 33.360675 | 30.695356 | 10.715310 |
Table: Benchmarking of rowDiffs(), apply+diff(), apply+diff2() and diff + t() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 0.001278 | 0.0017735 | 0.0020819 | 0.0020560 | 0.002277 | 0.007329 |
4 | diff + t | 0.009225 | 0.0100965 | 0.0115328 | 0.0115210 | 0.012146 | 0.029634 |
3 | apply+diff2 | 0.033501 | 0.0343785 | 0.0363943 | 0.0349085 | 0.035424 | 0.139590 |
2 | apply+diff | 0.067405 | 0.0688215 | 0.0701873 | 0.0694390 | 0.070156 | 0.093201 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 1.00000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff + t | 7.21831 | 5.69298 | 5.539625 | 5.603599 | 5.334212 | 4.043389 |
3 | apply+diff2 | 26.21362 | 19.38455 | 17.481548 | 16.978842 | 15.557312 | 19.046255 |
2 | apply+diff | 52.74257 | 38.80547 | 33.713604 | 33.773833 | 30.810716 | 12.716742 |
Figure: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on integer+10x10 data as well as rowDiffs(), apply+diff(), apply+diff2() and diff + t() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colDiffs() and rowDiffs() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 1.278 | 1.7735 | 2.08187 | 2.0560 | 2.2770 | 7.329 |
1 | colDiffs | 1.270 | 1.8170 | 2.16404 | 2.0725 | 2.2715 | 11.992 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.00000 |
1 | colDiffs | 0.9937402 | 1.024528 | 1.039469 | 1.008025 | 0.9975845 | 1.63624 |
Figure: Benchmarking of colDiffs() and rowDiffs() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3115258 166.4 5709258 305.0 5709258 305.0
Vcells 5525911 42.2 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colDiffs = colDiffs(X), `apply+diff` = apply(X, MARGIN = 2L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 2L, FUN = diff2), diff = diff(X), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3115249 166.4 5709258 305.0 5709258 305.0
Vcells 5530949 42.2 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowDiffs = rowDiffs(X), `apply+diff` = apply(X, MARGIN = 1L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 1L, FUN = diff2), `diff + t` = diff(t(X)), unit = "ms")
Table: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 0.009920 | 0.0109060 | 0.0119752 | 0.0114910 | 0.0118260 | 0.040385 |
4 | diff | 0.080247 | 0.0821780 | 0.0854313 | 0.0834555 | 0.0842980 | 0.137403 |
3 | apply+diff2 | 0.241004 | 0.2459205 | 0.2529544 | 0.2478870 | 0.2517745 | 0.418276 |
2 | apply+diff | 0.675984 | 0.6930305 | 0.7169101 | 0.7018950 | 0.7154390 | 1.138782 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff | 8.089415 | 7.535118 | 7.134028 | 7.262684 | 7.128192 | 3.402328 |
3 | apply+diff2 | 24.294758 | 22.549101 | 21.123206 | 21.572274 | 21.289912 | 10.357212 |
2 | apply+diff | 68.143548 | 63.545800 | 59.866280 | 61.082151 | 60.497125 | 28.198143 |
Table: Benchmarking of rowDiffs(), apply+diff(), apply+diff2() and diff + t() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 0.009978 | 0.0108210 | 0.0112527 | 0.0111070 | 0.0114755 | 0.019667 |
4 | diff + t | 0.095520 | 0.0974725 | 0.0990526 | 0.0986085 | 0.0997935 | 0.118905 |
3 | apply+diff2 | 0.242721 | 0.2464115 | 0.2495150 | 0.2485575 | 0.2513510 | 0.295441 |
2 | apply+diff | 0.684756 | 0.6932470 | 0.7055857 | 0.6986960 | 0.7083670 | 1.001963 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
4 | diff + t | 9.573061 | 9.007717 | 8.802592 | 8.87805 | 8.696222 | 6.045915 |
3 | apply+diff2 | 24.325616 | 22.771601 | 22.173864 | 22.37845 | 21.903272 | 15.022169 |
2 | apply+diff | 68.626578 | 64.064966 | 62.703900 | 62.90592 | 61.728639 | 50.946408 |
Figure: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on integer+100x100 data as well as rowDiffs(), apply+diff(), apply+diff2() and diff + t() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colDiffs() and rowDiffs() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 9.978 | 10.821 | 11.25266 | 11.107 | 11.4755 | 19.667 |
1 | colDiffs | 9.920 | 10.906 | 11.97519 | 11.491 | 11.8260 | 40.385 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 1.0000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.00000 |
1 | colDiffs | 0.9941872 | 1.007855 | 1.06421 | 1.034573 | 1.030543 | 2.05344 |
Figure: Benchmarking of colDiffs() and rowDiffs() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3116021 166.5 5709258 305.0 5709258 305.0
Vcells 5529701 42.2 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colDiffs = colDiffs(X), `apply+diff` = apply(X, MARGIN = 2L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 2L, FUN = diff2), diff = diff(X), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3116015 166.5 5709258 305.0 5709258 305.0
Vcells 5534744 42.3 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowDiffs = rowDiffs(X), `apply+diff` = apply(X, MARGIN = 1L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 1L, FUN = diff2), `diff + t` = diff(t(X)), unit = "ms")
Table: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 0.009307 | 0.0100455 | 0.0109699 | 0.0106900 | 0.0109750 | 0.036485 |
4 | diff | 0.082318 | 0.0840605 | 0.0856559 | 0.0849475 | 0.0860415 | 0.127109 |
3 | apply+diff2 | 0.100588 | 0.1053980 | 0.1092378 | 0.1075710 | 0.1112395 | 0.154065 |
2 | apply+diff | 0.227661 | 0.2324470 | 0.2486088 | 0.2377635 | 0.2532850 | 0.521992 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff | 8.844741 | 8.367976 | 7.808281 | 7.946445 | 7.839772 | 3.483870 |
3 | apply+diff2 | 10.807779 | 10.492061 | 9.957978 | 10.062769 | 10.135718 | 4.222694 |
2 | apply+diff | 24.461266 | 23.139416 | 22.662851 | 22.241674 | 23.078360 | 14.307030 |
Table: Benchmarking of rowDiffs(), apply+diff(), apply+diff2() and diff + t() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 0.009678 | 0.0105085 | 0.0110044 | 0.0110370 | 0.0112580 | 0.015880 |
4 | diff + t | 0.096710 | 0.0994460 | 0.1012975 | 0.1001915 | 0.1014715 | 0.181647 |
3 | apply+diff2 | 0.102084 | 0.1054135 | 0.1094620 | 0.1084810 | 0.1118010 | 0.137666 |
2 | apply+diff | 0.229195 | 0.2330665 | 0.2446532 | 0.2421940 | 0.2529835 | 0.311863 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff + t | 9.992767 | 9.463387 | 9.205176 | 9.077784 | 9.013279 | 11.438728 |
3 | apply+diff2 | 10.548047 | 10.031260 | 9.947104 | 9.828848 | 9.930805 | 8.669144 |
2 | apply+diff | 23.682062 | 22.178855 | 22.232288 | 21.943825 | 22.471442 | 19.638728 |
Figure: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on integer+1000x10 data as well as rowDiffs(), apply+diff(), apply+diff2() and diff + t() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colDiffs() and rowDiffs() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 9.307 | 10.0455 | 10.96988 | 10.690 | 10.975 | 36.485 |
2 | rowDiffs | 9.678 | 10.5085 | 11.00441 | 11.037 | 11.258 | 15.880 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.00000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 |
2 | rowDiffs | 1.039862 | 1.04609 | 1.003148 | 1.03246 | 1.025786 | 0.4352474 |
Figure: Benchmarking of colDiffs() and rowDiffs() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3116246 166.5 5709258 305.0 5709258 305.0
Vcells 5530519 42.2 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colDiffs = colDiffs(X), `apply+diff` = apply(X, MARGIN = 2L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 2L, FUN = diff2), diff = diff(X), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3116237 166.5 5709258 305.0 5709258 305.0
Vcells 5535557 42.3 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowDiffs = rowDiffs(X), `apply+diff` = apply(X, MARGIN = 1L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 1L, FUN = diff2), `diff + t` = diff(t(X)), unit = "ms")
Table: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 0.009235 | 0.0105635 | 0.0118427 | 0.011557 | 0.012477 | 0.019136 |
4 | diff | 0.077194 | 0.0802685 | 0.0858791 | 0.083122 | 0.085378 | 0.143532 |
3 | apply+diff2 | 1.591354 | 1.6218525 | 1.8159368 | 1.654945 | 1.714163 | 6.441504 |
2 | apply+diff | 4.965706 | 5.1157700 | 5.3844286 | 5.245360 | 5.439525 | 10.323822 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff | 8.358852 | 7.598665 | 7.251652 | 7.192351 | 6.842831 | 7.500627 |
3 | apply+diff2 | 172.317704 | 153.533630 | 153.338072 | 143.198451 | 137.385790 | 336.617057 |
2 | apply+diff | 537.705035 | 484.287405 | 454.662244 | 453.868608 | 435.964174 | 539.497387 |
Table: Benchmarking of rowDiffs(), apply+diff(), apply+diff2() and diff + t() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 0.008907 | 0.0099930 | 0.0113299 | 0.0109580 | 0.0121565 | 0.017723 |
4 | diff + t | 0.091877 | 0.0947805 | 0.1032366 | 0.0990875 | 0.1057695 | 0.175348 |
3 | apply+diff2 | 1.585711 | 1.6161850 | 1.6896580 | 1.6660525 | 1.7329050 | 1.980962 |
2 | apply+diff | 4.929119 | 5.0946145 | 5.4897445 | 5.2661250 | 5.4027555 | 10.473003 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 1.00000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.00000 |
4 | diff + t | 10.31515 | 9.484689 | 9.111847 | 9.04248 | 8.700654 | 9.89381 |
3 | apply+diff2 | 178.02975 | 161.731712 | 149.132254 | 152.03983 | 142.549665 | 111.77351 |
2 | apply+diff | 553.39834 | 509.818323 | 484.534720 | 480.57355 | 444.433472 | 590.92721 |
Figure: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on integer+10x1000 data as well as rowDiffs(), apply+diff(), apply+diff2() and diff + t() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colDiffs() and rowDiffs() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 8.907 | 9.9930 | 11.32993 | 10.958 | 12.1565 | 17.723 |
1 | colDiffs | 9.235 | 10.5635 | 11.84270 | 11.557 | 12.4770 | 19.136 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colDiffs | 1.036825 | 1.05709 | 1.045258 | 1.054663 | 1.026364 | 1.079727 |
Figure: Benchmarking of colDiffs() and rowDiffs() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3116469 166.5 5709258 305.0 5709258 305.0
Vcells 5531104 42.2 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colDiffs = colDiffs(X), `apply+diff` = apply(X, MARGIN = 2L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 2L, FUN = diff2), diff = diff(X), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3116460 166.5 5709258 305.0 5709258 305.0
Vcells 5581142 42.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowDiffs = rowDiffs(X), `apply+diff` = apply(X, MARGIN = 1L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 1L, FUN = diff2), `diff + t` = diff(t(X)), unit = "ms")
Table: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 0.087169 | 0.0925755 | 0.0985038 | 0.096522 | 0.1007805 | 0.21958 |
4 | diff | 0.742494 | 0.7553605 | 1.0954965 | 0.777774 | 0.8358645 | 15.65912 |
3 | apply+diff2 | 2.240516 | 2.3055240 | 2.5490086 | 2.351670 | 2.4236410 | 16.39443 |
2 | apply+diff | 6.619139 | 6.8144420 | 7.5455161 | 6.957101 | 7.2693915 | 22.61019 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.00000 | 1.00000 | 1.000000 | 1.000000 | 1.00000 |
4 | diff | 8.517868 | 8.15940 | 11.12136 | 8.057997 | 8.293911 | 71.31398 |
3 | apply+diff2 | 25.703128 | 24.90426 | 25.87725 | 24.364088 | 24.048710 | 74.66268 |
2 | apply+diff | 75.934552 | 73.60956 | 76.60125 | 72.077873 | 72.130933 | 102.97016 |
Table: Benchmarking of rowDiffs(), apply+diff(), apply+diff2() and diff + t() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 0.080714 | 0.085084 | 0.2295152 | 0.088314 | 0.0927070 | 13.38035 |
4 | diff + t | 0.856953 | 0.890669 | 1.2247585 | 0.915878 | 0.9646175 | 15.19377 |
3 | apply+diff2 | 2.246759 | 2.315821 | 2.7450913 | 2.377005 | 2.4885400 | 17.32280 |
2 | apply+diff | 6.627130 | 6.754207 | 9.8319702 | 6.929648 | 7.4608230 | 252.47289 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 1.00000 | 1.00000 | 1.000000 | 1.00000 | 1.00000 | 1.000000 |
4 | diff + t | 10.61715 | 10.46811 | 5.336284 | 10.37070 | 10.40501 | 1.135528 |
3 | apply+diff2 | 27.83605 | 27.21805 | 11.960389 | 26.91538 | 26.84306 | 1.294645 |
2 | apply+diff | 82.10633 | 79.38281 | 42.837988 | 78.46602 | 80.47745 | 18.868932 |
Figure: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on integer+100x1000 data as well as rowDiffs(), apply+diff(), apply+diff2() and diff + t() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colDiffs() and rowDiffs() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 80.714 | 85.0840 | 229.51522 | 88.314 | 92.7070 | 13380.35 |
1 | colDiffs | 87.169 | 92.5755 | 98.50383 | 96.522 | 100.7805 | 219.58 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colDiffs | 1.079974 | 1.088048 | 0.4291821 | 1.092941 | 1.087086 | 0.0164106 |
Figure: Benchmarking of colDiffs() and rowDiffs() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3116702 166.5 5709258 305.0 5709258 305.0
Vcells 5531789 42.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colDiffs = colDiffs(X), `apply+diff` = apply(X, MARGIN = 2L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 2L, FUN = diff2), diff = diff(X), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3116693 166.5 5709258 305.0 5709258 305.0
Vcells 5581827 42.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowDiffs = rowDiffs(X), `apply+diff` = apply(X, MARGIN = 1L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 1L, FUN = diff2), `diff + t` = diff(t(X)), unit = "ms")
Table: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 0.081767 | 0.0857730 | 0.0929655 | 0.0910595 | 0.0988515 | 0.114236 |
4 | diff | 0.738713 | 0.7458715 | 0.8026512 | 0.7582425 | 0.8596720 | 1.034397 |
3 | apply+diff2 | 0.837349 | 0.8475045 | 0.9754013 | 0.8719135 | 0.9433095 | 7.770486 |
2 | apply+diff | 2.097026 | 2.1284360 | 2.6722813 | 2.2429140 | 2.5575960 | 9.666034 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff | 9.034366 | 8.695877 | 8.633864 | 8.326891 | 8.696601 | 9.054913 |
3 | apply+diff2 | 10.240672 | 9.880784 | 10.492082 | 9.575206 | 9.542693 | 68.021342 |
2 | apply+diff | 25.646361 | 24.814755 | 28.744880 | 24.631301 | 25.873113 | 84.614605 |
Table: Benchmarking of rowDiffs(), apply+diff(), apply+diff2() and diff + t() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 0.086141 | 0.0880170 | 0.0940816 | 0.0900150 | 0.096867 | 0.128768 |
4 | diff + t | 0.871176 | 0.8827525 | 1.0105405 | 0.9042490 | 1.000484 | 7.358402 |
3 | apply+diff2 | 0.870173 | 0.8794700 | 1.0184523 | 0.9163815 | 1.006802 | 7.316249 |
2 | apply+diff | 2.125665 | 2.1449170 | 2.6449411 | 2.1888180 | 2.536551 | 9.075185 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 1.00000 | 1.000000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
4 | diff + t | 10.11337 | 10.029341 | 10.74111 | 10.04554 | 10.32842 | 57.14465 |
3 | apply+diff2 | 10.10173 | 9.992047 | 10.82520 | 10.18032 | 10.39365 | 56.81729 |
2 | apply+diff | 24.67658 | 24.369349 | 28.11327 | 24.31615 | 26.18591 | 70.47702 |
Figure: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on integer+1000x100 data as well as rowDiffs(), apply+diff(), apply+diff2() and diff + t() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colDiffs() and rowDiffs() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 86.141 | 88.017 | 94.08158 | 90.0150 | 96.8670 | 128.768 |
1 | colDiffs | 81.767 | 85.773 | 92.96547 | 91.0595 | 98.8515 | 114.236 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 1.0000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colDiffs | 0.9492228 | 0.9745049 | 0.9881368 | 1.011604 | 1.020487 | 0.8871459 |
Figure: Benchmarking of colDiffs() and rowDiffs() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3116941 166.5 5709258 305.0 5709258 305.0
Vcells 5648432 43.1 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colDiffs = colDiffs(X), `apply+diff` = apply(X, MARGIN = 2L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 2L, FUN = diff2), diff = diff(X), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3116923 166.5 5709258 305.0 5709258 305.0
Vcells 5648555 43.1 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowDiffs = rowDiffs(X), `apply+diff` = apply(X, MARGIN = 1L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 1L, FUN = diff2), `diff + t` = diff(t(X)), unit = "ms")
Table: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 0.001332 | 0.0017685 | 0.0021764 | 0.002117 | 0.0023290 | 0.012753 |
4 | diff | 0.006683 | 0.0074415 | 0.0087978 | 0.008487 | 0.0088460 | 0.063720 |
3 | apply+diff2 | 0.033904 | 0.0349200 | 0.0356623 | 0.035278 | 0.0356905 | 0.046555 |
2 | apply+diff | 0.068321 | 0.0694755 | 0.0710144 | 0.069875 | 0.0705875 | 0.130362 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff | 5.017267 | 4.207803 | 4.042382 | 4.008975 | 3.798197 | 4.996471 |
3 | apply+diff2 | 25.453453 | 19.745547 | 16.386045 | 16.664147 | 15.324388 | 3.650514 |
2 | apply+diff | 51.292042 | 39.284987 | 32.629591 | 33.006613 | 30.308072 | 10.222065 |
Table: Benchmarking of rowDiffs(), apply+diff(), apply+diff2() and diff + t() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 0.001196 | 0.0016925 | 0.0020263 | 0.0020565 | 0.0022110 | 0.006898 |
4 | diff + t | 0.008912 | 0.0101180 | 0.0112274 | 0.0113460 | 0.0118790 | 0.028226 |
3 | apply+diff2 | 0.033201 | 0.0339955 | 0.0352648 | 0.0343690 | 0.0348130 | 0.109465 |
2 | apply+diff | 0.067129 | 0.0680925 | 0.0695140 | 0.0686705 | 0.0695905 | 0.092455 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff + t | 7.451505 | 5.978139 | 5.540714 | 5.517141 | 5.372682 | 4.091911 |
3 | apply+diff2 | 27.760033 | 20.085967 | 17.403200 | 16.712375 | 15.745364 | 15.869093 |
2 | apply+diff | 56.127926 | 40.231906 | 34.305186 | 33.391928 | 31.474672 | 13.403160 |
Figure: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on double+10x10 data as well as rowDiffs(), apply+diff(), apply+diff2() and diff + t() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colDiffs() and rowDiffs() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 1.196 | 1.6925 | 2.02634 | 2.0565 | 2.211 | 6.898 |
1 | colDiffs | 1.332 | 1.7685 | 2.17638 | 2.1170 | 2.329 | 12.753 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
1 | colDiffs | 1.113712 | 1.044904 | 1.074045 | 1.029419 | 1.05337 | 1.848797 |
Figure: Benchmarking of colDiffs() and rowDiffs() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3117158 166.5 5709258 305.0 5709258 305.0
Vcells 5648569 43.1 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colDiffs = colDiffs(X), `apply+diff` = apply(X, MARGIN = 2L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 2L, FUN = diff2), diff = diff(X), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3117149 166.5 5709258 305.0 5709258 305.0
Vcells 5658607 43.2 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowDiffs = rowDiffs(X), `apply+diff` = apply(X, MARGIN = 1L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 1L, FUN = diff2), `diff + t` = diff(t(X)), unit = "ms")
Table: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 0.007826 | 0.0089330 | 0.0109103 | 0.0093670 | 0.0101715 | 0.105528 |
4 | diff | 0.072652 | 0.0745505 | 0.0822667 | 0.0759545 | 0.0807860 | 0.293838 |
3 | apply+diff2 | 0.281168 | 0.2854040 | 0.2985432 | 0.2890935 | 0.2951325 | 0.475516 |
2 | apply+diff | 0.683353 | 0.6971835 | 0.8540302 | 0.7070430 | 0.7260250 | 12.893743 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff | 9.283414 | 8.345517 | 7.54030 | 8.108733 | 7.942388 | 2.784455 |
3 | apply+diff2 | 35.927421 | 31.949401 | 27.36350 | 30.862976 | 29.015632 | 4.506065 |
2 | apply+diff | 87.318298 | 78.045841 | 78.27764 | 75.482332 | 71.378361 | 122.183146 |
Table: Benchmarking of rowDiffs(), apply+diff(), apply+diff2() and diff + t() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 0.007596 | 0.0088750 | 0.0105745 | 0.0094270 | 0.0118065 | 0.022192 |
4 | diff + t | 0.053961 | 0.0564360 | 0.2286574 | 0.0583420 | 0.0693790 | 16.516990 |
3 | apply+diff2 | 0.240055 | 0.2433520 | 0.2666842 | 0.2464280 | 0.2586960 | 0.449597 |
2 | apply+diff | 0.642614 | 0.6501085 | 0.6950446 | 0.6604355 | 0.6884510 | 1.091673 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.00000 |
4 | diff + t | 7.103871 | 6.358986 | 21.62343 | 6.188819 | 5.876339 | 744.27677 |
3 | apply+diff2 | 31.602817 | 27.419944 | 25.21951 | 26.140660 | 21.911320 | 20.25942 |
2 | apply+diff | 84.599000 | 73.251662 | 65.72824 | 70.057866 | 58.311185 | 49.19219 |
Figure: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on double+100x100 data as well as rowDiffs(), apply+diff(), apply+diff2() and diff + t() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colDiffs() and rowDiffs() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 7.826 | 8.933 | 10.91027 | 9.367 | 10.1715 | 105.528 |
2 | rowDiffs | 7.596 | 8.875 | 10.57452 | 9.427 | 11.8065 | 22.192 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.0000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowDiffs | 0.9706108 | 0.9935072 | 0.9692262 | 1.006406 | 1.160743 | 0.2102949 |
Figure: Benchmarking of colDiffs() and rowDiffs() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3117384 166.5 5709258 305.0 5709258 305.0
Vcells 5649631 43.2 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colDiffs = colDiffs(X), `apply+diff` = apply(X, MARGIN = 2L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 2L, FUN = diff2), diff = diff(X), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3117375 166.5 5709258 305.0 5709258 305.0
Vcells 5659669 43.2 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowDiffs = rowDiffs(X), `apply+diff` = apply(X, MARGIN = 1L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 1L, FUN = diff2), `diff + t` = diff(t(X)), unit = "ms")
Table: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 0.007905 | 0.0086945 | 0.0095011 | 0.0090655 | 0.0097005 | 0.021953 |
4 | diff | 0.073266 | 0.0750120 | 0.0781225 | 0.0760670 | 0.0769490 | 0.111926 |
3 | apply+diff2 | 0.145058 | 0.1481450 | 0.1536575 | 0.1499690 | 0.1534765 | 0.201126 |
2 | apply+diff | 0.230347 | 0.2374750 | 0.3072987 | 0.2439350 | 0.2505075 | 5.969996 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff | 9.268311 | 8.627523 | 8.222441 | 8.390822 | 7.932478 | 5.098438 |
3 | apply+diff2 | 18.350158 | 17.038933 | 16.172552 | 16.542827 | 15.821504 | 9.161664 |
2 | apply+diff | 29.139405 | 27.313244 | 32.343387 | 26.908058 | 25.824184 | 271.944427 |
Table: Benchmarking of rowDiffs(), apply+diff(), apply+diff2() and diff + t() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 0.007774 | 0.0087175 | 0.0093711 | 0.009075 | 0.0095330 | 0.018593 |
4 | diff + t | 0.054855 | 0.0570195 | 0.1176786 | 0.058473 | 0.0606920 | 5.704849 |
3 | apply+diff2 | 0.104058 | 0.1081360 | 0.1146844 | 0.110227 | 0.1172655 | 0.178295 |
2 | apply+diff | 0.191114 | 0.1957605 | 0.2085546 | 0.205078 | 0.2111210 | 0.291587 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff + t | 7.056213 | 6.540809 | 12.55755 | 6.443306 | 6.366516 | 306.827785 |
3 | apply+diff2 | 13.385387 | 12.404474 | 12.23804 | 12.146226 | 12.301007 | 9.589362 |
2 | apply+diff | 24.583741 | 22.456037 | 22.25499 | 22.598127 | 22.146334 | 15.682623 |
Figure: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on double+1000x10 data as well as rowDiffs(), apply+diff(), apply+diff2() and diff + t() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colDiffs() and rowDiffs() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 7.905 | 8.6945 | 9.50113 | 9.0655 | 9.7005 | 21.953 |
2 | rowDiffs | 7.774 | 8.7175 | 9.37114 | 9.0750 | 9.5330 | 18.593 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.0000000 | 1.000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 |
2 | rowDiffs | 0.9834282 | 1.002645 | 0.9863185 | 1.001048 | 0.9827328 | 0.8469457 |
Figure: Benchmarking of colDiffs() and rowDiffs() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3117606 166.5 5709258 305.0 5709258 305.0
Vcells 5650870 43.2 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colDiffs = colDiffs(X), `apply+diff` = apply(X, MARGIN = 2L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 2L, FUN = diff2), diff = diff(X), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3117597 166.5 5709258 305.0 5709258 305.0
Vcells 5660908 43.2 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowDiffs = rowDiffs(X), `apply+diff` = apply(X, MARGIN = 1L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 1L, FUN = diff2), `diff + t` = diff(t(X)), unit = "ms")
Table: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 0.007948 | 0.0106020 | 0.0129899 | 0.0123225 | 0.013964 | 0.029984 |
4 | diff | 0.039178 | 0.0426205 | 0.0475171 | 0.0455745 | 0.048588 | 0.090872 |
3 | apply+diff2 | 1.579078 | 1.6598810 | 1.8660162 | 1.7064235 | 1.770217 | 6.770882 |
2 | apply+diff | 4.886083 | 5.3134105 | 5.5818545 | 5.5080760 | 5.673311 | 10.608300 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff | 4.92929 | 4.020043 | 3.658018 | 3.698478 | 3.479519 | 3.030683 |
3 | apply+diff2 | 198.67614 | 156.563007 | 143.651758 | 138.480300 | 126.770087 | 225.816502 |
2 | apply+diff | 614.75629 | 501.170581 | 429.708594 | 446.993386 | 406.281223 | 353.798693 |
Table: Benchmarking of rowDiffs(), apply+diff(), apply+diff2() and diff + t() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 0.007831 | 0.0105750 | 0.0123780 | 0.0119180 | 0.0135355 | 0.023236 |
4 | diff + t | 0.054646 | 0.0583525 | 0.0655831 | 0.0626105 | 0.0692040 | 0.140861 |
3 | apply+diff2 | 1.576733 | 1.6441280 | 1.7074512 | 1.6826055 | 1.7476215 | 1.966085 |
2 | apply+diff | 4.970668 | 5.2324175 | 5.6254805 | 5.3840850 | 5.6055665 | 11.002043 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
4 | diff + t | 6.978164 | 5.517967 | 5.298349 | 5.25344 | 5.112777 | 6.062188 |
3 | apply+diff2 | 201.345039 | 155.473097 | 137.942194 | 141.18187 | 129.113923 | 84.613746 |
2 | apply+diff | 634.742434 | 494.791253 | 454.473370 | 451.76078 | 414.138118 | 473.491264 |
Figure: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on double+10x1000 data as well as rowDiffs(), apply+diff(), apply+diff2() and diff + t() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colDiffs() and rowDiffs() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 7.831 | 10.575 | 12.37802 | 11.9180 | 13.5355 | 23.236 |
1 | colDiffs | 7.948 | 10.602 | 12.98986 | 12.3225 | 13.9640 | 29.984 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 1.000000 | 1.000000 | 1.00000 | 1.00000 | 1.000000 | 1.000000 |
1 | colDiffs | 1.014941 | 1.002553 | 1.04943 | 1.03394 | 1.031657 | 1.290411 |
Figure: Benchmarking of colDiffs() and rowDiffs() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3117829 166.6 5709258 305.0 5709258 305.0
Vcells 5651018 43.2 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colDiffs = colDiffs(X), `apply+diff` = apply(X, MARGIN = 2L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 2L, FUN = diff2), diff = diff(X), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3117820 166.6 5709258 305.0 5709258 305.0
Vcells 5751056 43.9 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowDiffs = rowDiffs(X), `apply+diff` = apply(X, MARGIN = 1L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 1L, FUN = diff2), `diff + t` = diff(t(X)), unit = "ms")
Table: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 0.068753 | 0.0809590 | 0.2186692 | 0.0936815 | 0.1062405 | 11.97728 |
4 | diff | 0.671257 | 0.6902585 | 0.8713896 | 0.7059570 | 0.8116290 | 12.64426 |
3 | apply+diff2 | 2.657512 | 2.7096860 | 3.3058297 | 2.7729975 | 3.2179400 | 15.45456 |
2 | apply+diff | 6.709998 | 6.8670360 | 8.1240188 | 7.1100785 | 7.9345530 | 20.51747 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
4 | diff | 9.763312 | 8.526025 | 3.984967 | 7.535714 | 7.639544 | 1.055687 |
3 | apply+diff2 | 38.653033 | 33.469855 | 15.117947 | 29.600268 | 30.289202 | 1.290323 |
2 | apply+diff | 97.595712 | 84.821156 | 37.152091 | 75.896292 | 74.684824 | 1.713032 |
Table: Benchmarking of rowDiffs(), apply+diff(), apply+diff2() and diff + t() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 0.068515 | 0.0820635 | 0.1000359 | 0.091831 | 0.101646 | 0.266283 |
4 | diff + t | 0.454952 | 0.5172565 | 0.6786516 | 0.546358 | 0.598187 | 12.250272 |
3 | apply+diff2 | 2.284115 | 2.3557905 | 3.1236122 | 2.572386 | 2.977993 | 15.632607 |
2 | apply+diff | 6.343725 | 6.5136880 | 8.2095237 | 7.187853 | 8.147941 | 22.801852 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.00000 |
4 | diff + t | 6.640181 | 6.303125 | 6.78408 | 5.949603 | 5.885003 | 46.00471 |
3 | apply+diff2 | 33.337444 | 28.706922 | 31.22491 | 28.012169 | 29.297690 | 58.70674 |
2 | apply+diff | 92.588849 | 79.373753 | 82.06578 | 78.272620 | 80.159972 | 85.63015 |
Figure: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on double+100x1000 data as well as rowDiffs(), apply+diff(), apply+diff2() and diff + t() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colDiffs() and rowDiffs() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 68.515 | 82.0635 | 100.0359 | 91.8310 | 101.6460 | 266.283 |
1 | colDiffs | 68.753 | 80.9590 | 218.6692 | 93.6815 | 106.2405 | 11977.281 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowDiffs | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
1 | colDiffs | 1.003474 | 0.9865409 | 2.185907 | 1.020151 | 1.045201 | 44.97952 |
Figure: Benchmarking of colDiffs() and rowDiffs() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3118062 166.6 5709258 305.0 5709258 305.0
Vcells 5652492 43.2 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colDiffs = colDiffs(X), `apply+diff` = apply(X, MARGIN = 2L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 2L, FUN = diff2), diff = diff(X), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3118053 166.6 5709258 305.0 5709258 305.0
Vcells 5752530 43.9 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowDiffs = rowDiffs(X), `apply+diff` = apply(X, MARGIN = 1L, FUN = diff),
+ `apply+diff2` = apply(X, MARGIN = 1L, FUN = diff2), `diff + t` = diff(t(X)), unit = "ms")
Table: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 0.067611 | 0.0821295 | 0.0927182 | 0.088574 | 0.1024565 | 0.134425 |
4 | diff | 0.341218 | 0.3933645 | 0.5556137 | 0.421854 | 0.4479860 | 7.588598 |
3 | apply+diff2 | 0.891035 | 1.0466215 | 1.2835500 | 1.109388 | 1.1563550 | 7.021451 |
2 | apply+diff | 1.739943 | 2.1044035 | 2.6775548 | 2.251618 | 2.4016450 | 14.261253 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
4 | diff | 5.046782 | 4.789564 | 5.992501 | 4.762729 | 4.372451 | 56.45228 |
3 | apply+diff2 | 13.178847 | 12.743551 | 13.843564 | 12.524985 | 11.286302 | 52.23322 |
2 | apply+diff | 25.734614 | 25.622992 | 28.878426 | 25.420750 | 23.440631 | 106.09078 |
Table: Benchmarking of rowDiffs(), apply+diff(), apply+diff2() and diff + t() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 0.069929 | 0.0835605 | 0.1677974 | 0.0925420 | 0.1084595 | 6.896821 |
4 | diff + t | 0.460530 | 0.5702410 | 0.6175363 | 0.5985205 | 0.6342225 | 1.395840 |
3 | apply+diff2 | 0.902764 | 1.0965220 | 1.4181183 | 1.1716210 | 1.2517770 | 7.471189 |
2 | apply+diff | 1.802847 | 2.2327080 | 2.8208954 | 2.3852495 | 2.5657390 | 10.253641 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowDiffs | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
4 | diff + t | 6.58568 | 6.824289 | 3.680250 | 6.467555 | 5.847551 | 0.2023889 |
3 | apply+diff2 | 12.90972 | 13.122492 | 8.451373 | 12.660424 | 11.541423 | 1.0832801 |
2 | apply+diff | 25.78111 | 26.719658 | 16.811320 | 25.774778 | 23.656194 | 1.4867199 |
Figure: Benchmarking of colDiffs(), apply+diff(), apply+diff2() and diff() on double+1000x100 data as well as rowDiffs(), apply+diff(), apply+diff2() and diff + t() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colDiffs() and rowDiffs() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 67.611 | 82.1295 | 92.71817 | 88.574 | 102.4565 | 134.425 |
2 | rowDiffs | 69.929 | 83.5605 | 167.79738 | 92.542 | 108.4595 | 6896.821 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colDiffs | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | rowDiffs | 1.034284 | 1.017424 | 1.809757 | 1.044799 | 1.058591 | 51.30609 |
Figure: Benchmarking of colDiffs() and rowDiffs() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 35.3 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colDiffs')
Copyright Henrik Bengtsson. Last updated on 2019-09-10 20:40:52 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>