-
Notifications
You must be signed in to change notification settings - Fork 34
colRowSums2_subset
matrixStats: Benchmark report
This report benchmark the performance of colSums2() and rowSums2() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3197358 170.8 5709258 305.0 5709258 305.0
Vcells 6445683 49.2 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2_X_S = colSums2(X_S, na.rm = FALSE), `colSums2(X, rows, cols)` = colSums2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colSums2(X[rows, cols])` = colSums2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3196131 170.7 5709258 305.0 5709258 305.0
Vcells 6442354 49.2 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2_X_S = rowSums2(X_S, na.rm = FALSE), `rowSums2(X, cols, rows)` = rowSums2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowSums2(X[cols, rows])` = rowSums2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 0.001035 | 0.001066 | 0.0018599 | 0.0010845 | 0.0011400 | 0.074674 |
2 | colSums2(X, rows, cols) | 0.001170 | 0.001233 | 0.0012997 | 0.0012715 | 0.0013005 | 0.002546 |
3 | colSums2(X[rows, cols]) | 0.001517 | 0.001661 | 0.0018492 | 0.0017720 | 0.0018835 | 0.005732 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colSums2(X, rows, cols) | 1.130435 | 1.156660 | 0.6988171 | 1.172430 | 1.140789 | 0.0340949 |
3 | colSums2(X[rows, cols]) | 1.465701 | 1.558161 | 0.9942578 | 1.633933 | 1.652193 | 0.0767603 |
Table: Benchmarking of rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 0.001019 | 0.0010450 | 0.0011153 | 0.0010630 | 0.0010995 | 0.003100 |
2 | rowSums2(X, cols, rows) | 0.001180 | 0.0012170 | 0.0021450 | 0.0012405 | 0.0012955 | 0.087927 |
3 | rowSums2(X[cols, rows]) | 0.001502 | 0.0017075 | 0.0018608 | 0.0017550 | 0.0019160 | 0.004949 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2(X, cols, rows) | 1.157998 | 1.164593 | 1.923225 | 1.166980 | 1.178263 | 28.363548 |
3 | rowSums2(X[cols, rows]) | 1.473994 | 1.633971 | 1.668415 | 1.650988 | 1.742610 | 1.596452 |
Figure: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on integer+10x10 data as well as rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2_X_S() and rowSums2_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2_X_S | 1.019 | 1.045 | 1.11534 | 1.0630 | 1.0995 | 3.100 |
1 | colSums2_X_S | 1.035 | 1.066 | 1.85990 | 1.0845 | 1.1400 | 74.674 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
1 | colSums2_X_S | 1.015702 | 1.020096 | 1.667563 | 1.020226 | 1.036835 | 24.08839 |
Figure: Benchmarking of colSums2_X_S() and rowSums2_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3194737 170.7 5709258 305.0 5709258 305.0
Vcells 6111235 46.7 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2_X_S = colSums2(X_S, na.rm = FALSE), `colSums2(X, rows, cols)` = colSums2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colSums2(X[rows, cols])` = colSums2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3194728 170.7 5709258 305.0 5709258 305.0
Vcells 6116313 46.7 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2_X_S = rowSums2(X_S, na.rm = FALSE), `rowSums2(X, cols, rows)` = rowSums2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowSums2(X[cols, rows])` = rowSums2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 0.005432 | 0.0058030 | 0.0059374 | 0.0058855 | 0.0060230 | 0.008229 |
2 | colSums2(X, rows, cols) | 0.006752 | 0.0072665 | 0.0074621 | 0.0074010 | 0.0075470 | 0.009545 |
3 | colSums2(X[rows, cols]) | 0.013047 | 0.0134105 | 0.0139184 | 0.0135125 | 0.0136595 | 0.041372 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | colSums2(X, rows, cols) | 1.243004 | 1.252197 | 1.256805 | 1.257497 | 1.25303 | 1.159922 |
3 | colSums2(X[rows, cols]) | 2.401878 | 2.310960 | 2.344192 | 2.295897 | 2.26789 | 5.027585 |
Table: Benchmarking of rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 0.005461 | 0.0059245 | 0.0062030 | 0.0060805 | 0.006241 | 0.011569 |
2 | rowSums2(X, cols, rows) | 0.006495 | 0.0069330 | 0.0070705 | 0.0070375 | 0.007206 | 0.008143 |
3 | rowSums2(X[cols, rows]) | 0.013174 | 0.0136170 | 0.0142560 | 0.0137660 | 0.013919 | 0.041166 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowSums2(X, cols, rows) | 1.189343 | 1.170225 | 1.139843 | 1.157388 | 1.154623 | 0.7038638 |
3 | rowSums2(X[cols, rows]) | 2.412379 | 2.298422 | 2.298229 | 2.263959 | 2.230252 | 3.5583024 |
Figure: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on integer+100x100 data as well as rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2_X_S() and rowSums2_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 5.432 | 5.8030 | 5.93739 | 5.8855 | 6.023 | 8.229 |
2 | rowSums2_X_S | 5.461 | 5.9245 | 6.20305 | 6.0805 | 6.241 | 11.569 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2_X_S | 1.005339 | 1.020937 | 1.044744 | 1.033132 | 1.036195 | 1.405882 |
Figure: Benchmarking of colSums2_X_S() and rowSums2_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3195490 170.7 5709258 305.0 5709258 305.0
Vcells 6115306 46.7 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2_X_S = colSums2(X_S, na.rm = FALSE), `colSums2(X, rows, cols)` = colSums2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colSums2(X[rows, cols])` = colSums2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3195481 170.7 5709258 305.0 5709258 305.0
Vcells 6120384 46.7 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2_X_S = rowSums2(X_S, na.rm = FALSE), `rowSums2(X, cols, rows)` = rowSums2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowSums2(X[cols, rows])` = rowSums2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 0.006711 | 0.0069925 | 0.0071730 | 0.0070970 | 0.0072185 | 0.009723 |
2 | colSums2(X, rows, cols) | 0.007772 | 0.0079840 | 0.0083783 | 0.0080865 | 0.0082790 | 0.031142 |
3 | colSums2(X[rows, cols]) | 0.014392 | 0.0146925 | 0.0150488 | 0.0148230 | 0.0150795 | 0.023435 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colSums2(X, rows, cols) | 1.158099 | 1.141795 | 1.168035 | 1.139425 | 1.146914 | 3.202921 |
3 | colSums2(X[rows, cols]) | 2.144539 | 2.101180 | 2.097980 | 2.088629 | 2.089007 | 2.410264 |
Table: Benchmarking of rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 0.006746 | 0.0070305 | 0.0075092 | 0.0071610 | 0.0073315 | 0.032304 |
2 | rowSums2(X, cols, rows) | 0.007753 | 0.0080340 | 0.0082928 | 0.0081565 | 0.0082985 | 0.017996 |
3 | rowSums2(X[cols, rows]) | 0.015381 | 0.0158460 | 0.0162522 | 0.0160045 | 0.0162585 | 0.025505 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowSums2(X, cols, rows) | 1.149274 | 1.142735 | 1.104351 | 1.139017 | 1.131897 | 0.5570827 |
3 | rowSums2(X[cols, rows]) | 2.280018 | 2.253894 | 2.164301 | 2.234953 | 2.217623 | 0.7895307 |
Figure: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on integer+1000x10 data as well as rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2_X_S() and rowSums2_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 6.711 | 6.9925 | 7.17302 | 7.097 | 7.2185 | 9.723 |
2 | rowSums2_X_S | 6.746 | 7.0305 | 7.50921 | 7.161 | 7.3315 | 32.304 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2_X_S | 1.005215 | 1.005434 | 1.046869 | 1.009018 | 1.015654 | 3.322431 |
Figure: Benchmarking of colSums2_X_S() and rowSums2_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3195696 170.7 5709258 305.0 5709258 305.0
Vcells 6116129 46.7 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2_X_S = colSums2(X_S, na.rm = FALSE), `colSums2(X, rows, cols)` = colSums2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colSums2(X[rows, cols])` = colSums2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3195687 170.7 5709258 305.0 5709258 305.0
Vcells 6121207 46.8 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2_X_S = rowSums2(X_S, na.rm = FALSE), `rowSums2(X, cols, rows)` = rowSums2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowSums2(X[cols, rows])` = rowSums2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 0.005439 | 0.0056395 | 0.0058294 | 0.0057710 | 0.005896 | 0.007870 |
2 | colSums2(X, rows, cols) | 0.007919 | 0.0081770 | 0.0087653 | 0.0083025 | 0.008490 | 0.048252 |
3 | colSums2(X[rows, cols]) | 0.013958 | 0.0143835 | 0.0148283 | 0.0145720 | 0.014812 | 0.025299 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colSums2(X, rows, cols) | 1.455966 | 1.449951 | 1.503625 | 1.438659 | 1.439959 | 6.131131 |
3 | colSums2(X[rows, cols]) | 2.566281 | 2.550492 | 2.543701 | 2.525039 | 2.512212 | 3.214612 |
Table: Benchmarking of rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 0.005446 | 0.0056410 | 0.0062585 | 0.0057940 | 0.0059285 | 0.042603 |
2 | rowSums2(X, cols, rows) | 0.007578 | 0.0077690 | 0.0079893 | 0.0078845 | 0.0080590 | 0.010186 |
3 | rowSums2(X[cols, rows]) | 0.012853 | 0.0132495 | 0.0138788 | 0.0134000 | 0.0136290 | 0.030771 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowSums2(X, cols, rows) | 1.391480 | 1.377238 | 1.276537 | 1.360804 | 1.359366 | 0.2390911 |
3 | rowSums2(X[cols, rows]) | 2.360081 | 2.348786 | 2.217586 | 2.312737 | 2.298895 | 0.7222731 |
Figure: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on integer+10x1000 data as well as rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2_X_S() and rowSums2_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 5.439 | 5.6395 | 5.82942 | 5.771 | 5.8960 | 7.870 |
2 | rowSums2_X_S | 5.446 | 5.6410 | 6.25854 | 5.794 | 5.9285 | 42.603 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2_X_S | 1.001287 | 1.000266 | 1.073613 | 1.003985 | 1.005512 | 5.413342 |
Figure: Benchmarking of colSums2_X_S() and rowSums2_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3195895 170.7 5709258 305.0 5709258 305.0
Vcells 6138787 46.9 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2_X_S = colSums2(X_S, na.rm = FALSE), `colSums2(X, rows, cols)` = colSums2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colSums2(X[rows, cols])` = colSums2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3195886 170.7 5709258 305.0 5709258 305.0
Vcells 6188865 47.3 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2_X_S = rowSums2(X_S, na.rm = FALSE), `rowSums2(X, cols, rows)` = rowSums2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowSums2(X[cols, rows])` = rowSums2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 0.044255 | 0.0445630 | 0.0448186 | 0.0447360 | 0.0449230 | 0.047774 |
2 | colSums2(X, rows, cols) | 0.060130 | 0.0619820 | 0.0628707 | 0.0621915 | 0.0624515 | 0.131813 |
3 | colSums2(X[rows, cols]) | 0.115757 | 0.1163415 | 0.1178107 | 0.1167395 | 0.1178850 | 0.134544 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colSums2(X, rows, cols) | 1.358717 | 1.390885 | 1.402781 | 1.390189 | 1.390190 | 2.759095 |
3 | colSums2(X[rows, cols]) | 2.615682 | 2.610720 | 2.628611 | 2.609520 | 2.624157 | 2.816260 |
Table: Benchmarking of rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 0.046350 | 0.0467460 | 0.0482821 | 0.0469635 | 0.0472640 | 0.103522 |
2 | rowSums2(X, cols, rows) | 0.072971 | 0.0734845 | 0.0749694 | 0.0737825 | 0.0741945 | 0.140462 |
3 | rowSums2(X[cols, rows]) | 0.109455 | 0.1105585 | 0.1134926 | 0.1113530 | 0.1130850 | 0.171994 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2(X, cols, rows) | 1.574347 | 1.571996 | 1.552736 | 1.571060 | 1.569789 | 1.356832 |
3 | rowSums2(X[cols, rows]) | 2.361489 | 2.365090 | 2.350614 | 2.371054 | 2.392624 | 1.661425 |
Figure: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on integer+100x1000 data as well as rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2_X_S() and rowSums2_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 44.255 | 44.563 | 44.81863 | 44.7360 | 44.923 | 47.774 |
2 | rowSums2_X_S | 46.350 | 46.746 | 48.28211 | 46.9635 | 47.264 | 103.522 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2_X_S | 1.047339 | 1.048987 | 1.077278 | 1.049792 | 1.052111 | 2.166911 |
Figure: Benchmarking of colSums2_X_S() and rowSums2_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3196111 170.7 5709258 305.0 5709258 305.0
Vcells 6139567 46.9 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2_X_S = colSums2(X_S, na.rm = FALSE), `colSums2(X, rows, cols)` = colSums2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colSums2(X[rows, cols])` = colSums2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3196102 170.7 5709258 305.0 5709258 305.0
Vcells 6189645 47.3 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2_X_S = rowSums2(X_S, na.rm = FALSE), `rowSums2(X, cols, rows)` = rowSums2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowSums2(X[cols, rows])` = rowSums2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 0.052243 | 0.0525990 | 0.0529400 | 0.052829 | 0.053070 | 0.057768 |
2 | colSums2(X, rows, cols) | 0.056656 | 0.0572155 | 0.0575972 | 0.057503 | 0.057793 | 0.061416 |
3 | colSums2(X[rows, cols]) | 0.115427 | 0.1160940 | 0.1182083 | 0.116377 | 0.117003 | 0.205710 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colSums2(X, rows, cols) | 1.084471 | 1.087768 | 1.087970 | 1.088474 | 1.088996 | 1.063149 |
3 | colSums2(X[rows, cols]) | 2.209425 | 2.207152 | 2.232872 | 2.202900 | 2.204692 | 3.560968 |
Table: Benchmarking of rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 0.065064 | 0.0692190 | 0.0721003 | 0.0702745 | 0.071174 | 0.115482 |
2 | rowSums2(X, cols, rows) | 0.092840 | 0.0965175 | 0.1038314 | 0.0992115 | 0.099822 | 0.260106 |
3 | rowSums2(X[cols, rows]) | 0.153781 | 0.1610900 | 0.1711527 | 0.1642380 | 0.172786 | 0.281755 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2(X, cols, rows) | 1.426903 | 1.394379 | 1.440096 | 1.411771 | 1.402507 | 2.252351 |
3 | rowSums2(X[cols, rows]) | 2.363534 | 2.327251 | 2.373813 | 2.337092 | 2.427656 | 2.439818 |
Figure: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on integer+1000x100 data as well as rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2_X_S() and rowSums2_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 52.243 | 52.599 | 52.94004 | 52.8290 | 53.070 | 57.768 |
2 | rowSums2_X_S | 65.064 | 69.219 | 72.10032 | 70.2745 | 71.174 | 115.482 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2_X_S | 1.245411 | 1.315976 | 1.361924 | 1.330226 | 1.341134 | 1.999065 |
Figure: Benchmarking of colSums2_X_S() and rowSums2_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3196329 170.8 5709258 305.0 5709258 305.0
Vcells 6230664 47.6 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2_X_S = colSums2(X_S, na.rm = FALSE), `colSums2(X, rows, cols)` = colSums2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colSums2(X[rows, cols])` = colSums2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3196311 170.8 5709258 305.0 5709258 305.0
Vcells 6230827 47.6 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2_X_S = rowSums2(X_S, na.rm = FALSE), `rowSums2(X, cols, rows)` = rowSums2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowSums2(X[cols, rows])` = rowSums2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 0.001048 | 0.0010800 | 0.0013177 | 0.0010990 | 0.0011815 | 0.016339 |
2 | colSums2(X, rows, cols) | 0.001226 | 0.0012795 | 0.0014174 | 0.0013015 | 0.0013915 | 0.005124 |
3 | colSums2(X[rows, cols]) | 0.001623 | 0.0018745 | 0.0020363 | 0.0019320 | 0.0020305 | 0.007173 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colSums2(X, rows, cols) | 1.169847 | 1.184722 | 1.075631 | 1.184258 | 1.177740 | 0.3136055 |
3 | colSums2(X[rows, cols]) | 1.548664 | 1.735648 | 1.545343 | 1.757962 | 1.718578 | 0.4390110 |
Table: Benchmarking of rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 0.001026 | 0.0010550 | 0.0011601 | 0.0010805 | 0.0012100 | 0.003327 |
2 | rowSums2(X, cols, rows) | 0.001187 | 0.0012355 | 0.0015811 | 0.0012590 | 0.0013490 | 0.027926 |
3 | rowSums2(X[cols, rows]) | 0.001505 | 0.0017420 | 0.0019006 | 0.0017880 | 0.0018955 | 0.006839 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2(X, cols, rows) | 1.156920 | 1.171090 | 1.362856 | 1.165201 | 1.114876 | 8.393748 |
3 | rowSums2(X[cols, rows]) | 1.466862 | 1.651185 | 1.638222 | 1.654789 | 1.566529 | 2.055606 |
Figure: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on double+10x10 data as well as rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2_X_S() and rowSums2_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2_X_S | 1.026 | 1.055 | 1.16013 | 1.0805 | 1.2100 | 3.327 |
1 | colSums2_X_S | 1.048 | 1.080 | 1.31772 | 1.0990 | 1.1815 | 16.339 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.000000 |
1 | colSums2_X_S | 1.021443 | 1.023697 | 1.135838 | 1.017122 | 0.9764463 | 4.911031 |
Figure: Benchmarking of colSums2_X_S() and rowSums2_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3196530 170.8 5709258 305.0 5709258 305.0
Vcells 6236610 47.6 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2_X_S = colSums2(X_S, na.rm = FALSE), `colSums2(X, rows, cols)` = colSums2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colSums2(X[rows, cols])` = colSums2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3196521 170.8 5709258 305.0 5709258 305.0
Vcells 6246688 47.7 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2_X_S = rowSums2(X_S, na.rm = FALSE), `rowSums2(X, cols, rows)` = rowSums2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowSums2(X[cols, rows])` = rowSums2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 0.005751 | 0.0062130 | 0.0063442 | 0.0063030 | 0.0064105 | 0.009819 |
2 | colSums2(X, rows, cols) | 0.007573 | 0.0082465 | 0.0085612 | 0.0083970 | 0.0085255 | 0.023860 |
3 | colSums2(X[rows, cols]) | 0.021516 | 0.0219135 | 0.0225538 | 0.0220415 | 0.0222065 | 0.054601 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colSums2(X, rows, cols) | 1.316814 | 1.327298 | 1.349457 | 1.332223 | 1.329927 | 2.429983 |
3 | colSums2(X[rows, cols]) | 3.741262 | 3.527040 | 3.555020 | 3.496986 | 3.464082 | 5.560750 |
Table: Benchmarking of rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 0.005822 | 0.0063485 | 0.0066357 | 0.0065035 | 0.0066975 | 0.013942 |
2 | rowSums2(X, cols, rows) | 0.007646 | 0.0080775 | 0.0082670 | 0.0082705 | 0.0083845 | 0.010039 |
3 | rowSums2(X[cols, rows]) | 0.013164 | 0.0137735 | 0.0144908 | 0.0140090 | 0.0142765 | 0.056080 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowSums2(X, cols, rows) | 1.313294 | 1.272348 | 1.245838 | 1.271700 | 1.251885 | 0.7200545 |
3 | rowSums2(X[cols, rows]) | 2.261079 | 2.169568 | 2.183781 | 2.154071 | 2.131616 | 4.0223784 |
Figure: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on double+100x100 data as well as rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2_X_S() and rowSums2_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 5.751 | 6.2130 | 6.34421 | 6.3030 | 6.4105 | 9.819 |
2 | rowSums2_X_S | 5.822 | 6.3485 | 6.63566 | 6.5035 | 6.6975 | 13.942 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.00000 | 1.00000 | 1.00000 | 1.0000 |
2 | rowSums2_X_S | 1.012346 | 1.021809 | 1.04594 | 1.03181 | 1.04477 | 1.4199 |
Figure: Benchmarking of colSums2_X_S() and rowSums2_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3196740 170.8 5709258 305.0 5709258 305.0
Vcells 6238016 47.6 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2_X_S = colSums2(X_S, na.rm = FALSE), `colSums2(X, rows, cols)` = colSums2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colSums2(X[rows, cols])` = colSums2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3196731 170.8 5709258 305.0 5709258 305.0
Vcells 6248094 47.7 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2_X_S = rowSums2(X_S, na.rm = FALSE), `rowSums2(X, cols, rows)` = rowSums2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowSums2(X[cols, rows])` = rowSums2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 0.006733 | 0.0070935 | 0.0073250 | 0.0072105 | 0.0073500 | 0.010209 |
2 | colSums2(X, rows, cols) | 0.007890 | 0.0082095 | 0.0087692 | 0.0084055 | 0.0085800 | 0.043921 |
3 | colSums2(X[rows, cols]) | 0.022668 | 0.0228990 | 0.0231386 | 0.0230505 | 0.0231465 | 0.029557 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colSums2(X, rows, cols) | 1.171840 | 1.157327 | 1.197152 | 1.165731 | 1.167347 | 4.302184 |
3 | colSums2(X[rows, cols]) | 3.366701 | 3.228167 | 3.158856 | 3.196796 | 3.149184 | 2.895191 |
Table: Benchmarking of rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 0.006847 | 0.007174 | 0.0075666 | 0.0072990 | 0.0074375 | 0.024413 |
2 | rowSums2(X, cols, rows) | 0.008029 | 0.008363 | 0.0087446 | 0.0085465 | 0.0087715 | 0.022805 |
3 | rowSums2(X[cols, rows]) | 0.015980 | 0.016389 | 0.0168253 | 0.0166000 | 0.0168715 | 0.029119 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowSums2(X, cols, rows) | 1.172630 | 1.165737 | 1.155671 | 1.170914 | 1.179361 | 0.9341335 |
3 | rowSums2(X[cols, rows]) | 2.333869 | 2.284500 | 2.223621 | 2.274284 | 2.268437 | 1.1927661 |
Figure: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on double+1000x10 data as well as rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2_X_S() and rowSums2_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 6.733 | 7.0935 | 7.32501 | 7.2105 | 7.3500 | 10.209 |
2 | rowSums2_X_S | 6.847 | 7.1740 | 7.56664 | 7.2990 | 7.4375 | 24.413 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2_X_S | 1.016932 | 1.011348 | 1.032987 | 1.012274 | 1.011905 | 2.391321 |
Figure: Benchmarking of colSums2_X_S() and rowSums2_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3196946 170.8 5709258 305.0 5709258 305.0
Vcells 6238153 47.6 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2_X_S = colSums2(X_S, na.rm = FALSE), `colSums2(X, rows, cols)` = colSums2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colSums2(X[rows, cols])` = colSums2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3196937 170.8 5709258 305.0 5709258 305.0
Vcells 6248231 47.7 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2_X_S = rowSums2(X_S, na.rm = FALSE), `rowSums2(X, cols, rows)` = rowSums2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowSums2(X[cols, rows])` = rowSums2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 0.007668 | 0.0079515 | 0.0081400 | 0.0080375 | 0.0081905 | 0.013034 |
2 | colSums2(X, rows, cols) | 0.009935 | 0.0102115 | 0.0108178 | 0.0104055 | 0.0105705 | 0.046167 |
3 | colSums2(X[rows, cols]) | 0.016587 | 0.0170885 | 0.0173450 | 0.0172285 | 0.0174825 | 0.023320 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colSums2(X, rows, cols) | 1.295644 | 1.284223 | 1.328963 | 1.294619 | 1.290581 | 3.542044 |
3 | colSums2(X[rows, cols]) | 2.163146 | 2.149091 | 2.130834 | 2.143515 | 2.134485 | 1.789167 |
Table: Benchmarking of rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 0.007668 | 0.0079165 | 0.0082255 | 0.0079875 | 0.0081200 | 0.024201 |
2 | rowSums2(X, cols, rows) | 0.009576 | 0.0098405 | 0.0100772 | 0.0099830 | 0.0101225 | 0.014620 |
3 | rowSums2(X[cols, rows]) | 0.015401 | 0.0157295 | 0.0162166 | 0.0159225 | 0.0161545 | 0.031760 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowSums2(X, cols, rows) | 1.248826 | 1.243037 | 1.225110 | 1.249828 | 1.246613 | 0.6041073 |
3 | rowSums2(X[cols, rows]) | 2.008477 | 1.986926 | 1.971497 | 1.993427 | 1.989470 | 1.3123425 |
Figure: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on double+10x1000 data as well as rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2_X_S() and rowSums2_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2_X_S | 7.668 | 7.9165 | 8.22553 | 7.9875 | 8.1200 | 24.201 |
1 | colSums2_X_S | 7.668 | 7.9515 | 8.14000 | 8.0375 | 8.1905 | 13.034 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2_X_S | 1 | 1.000000 | 1.0000000 | 1.00000 | 1.000000 | 1.0000000 |
1 | colSums2_X_S | 1 | 1.004421 | 0.9896019 | 1.00626 | 1.008682 | 0.5385728 |
Figure: Benchmarking of colSums2_X_S() and rowSums2_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3197145 170.8 5709258 305.0 5709258 305.0
Vcells 6283589 48.0 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2_X_S = colSums2(X_S, na.rm = FALSE), `colSums2(X, rows, cols)` = colSums2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colSums2(X[rows, cols])` = colSums2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3197136 170.8 5709258 305.0 5709258 305.0
Vcells 6383667 48.8 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2_X_S = rowSums2(X_S, na.rm = FALSE), `rowSums2(X, cols, rows)` = rowSums2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowSums2(X[cols, rows])` = rowSums2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 0.047286 | 0.047713 | 0.0533056 | 0.0480610 | 0.0491315 | 0.098006 |
2 | colSums2(X, rows, cols) | 0.068441 | 0.068929 | 0.0806109 | 0.0691405 | 0.0700825 | 0.166081 |
3 | colSums2(X[rows, cols]) | 0.194958 | 0.196620 | 0.2215189 | 0.1983200 | 0.2033505 | 0.398980 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colSums2(X, rows, cols) | 1.447384 | 1.444659 | 1.512241 | 1.438599 | 1.426427 | 1.694600 |
3 | colSums2(X[rows, cols]) | 4.122954 | 4.120889 | 4.155640 | 4.126423 | 4.138903 | 4.070975 |
Table: Benchmarking of rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 0.054898 | 0.0599035 | 0.0642159 | 0.0632010 | 0.0658030 | 0.175677 |
2 | rowSums2(X, cols, rows) | 0.098190 | 0.1074955 | 0.1120233 | 0.1146325 | 0.1156095 | 0.172798 |
3 | rowSums2(X[cols, rows]) | 0.134321 | 0.1497480 | 0.1604563 | 0.1582800 | 0.1666785 | 0.283316 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2(X, cols, rows) | 1.788590 | 1.794478 | 1.744479 | 1.813777 | 1.756903 | 0.983612 |
3 | rowSums2(X[cols, rows]) | 2.446738 | 2.499820 | 2.498700 | 2.504391 | 2.532992 | 1.612710 |
Figure: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on double+100x1000 data as well as rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2_X_S() and rowSums2_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 47.286 | 47.7130 | 53.30559 | 48.061 | 49.1315 | 98.006 |
2 | rowSums2_X_S | 54.898 | 59.9035 | 64.21591 | 63.201 | 65.8030 | 175.677 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2_X_S | 1.160978 | 1.255496 | 1.204675 | 1.315016 | 1.339324 | 1.792513 |
Figure: Benchmarking of colSums2_X_S() and rowSums2_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3197361 170.8 5709258 305.0 5709258 305.0
Vcells 6283736 48.0 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colSums2_X_S = colSums2(X_S, na.rm = FALSE), `colSums2(X, rows, cols)` = colSums2(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colSums2(X[rows, cols])` = colSums2(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3197352 170.8 5709258 305.0 5709258 305.0
Vcells 6383814 48.8 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowSums2_X_S = rowSums2(X_S, na.rm = FALSE), `rowSums2(X, cols, rows)` = rowSums2(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowSums2(X[cols, rows])` = rowSums2(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 0.065700 | 0.0679140 | 0.0717249 | 0.0688030 | 0.070108 | 0.224654 |
2 | colSums2(X, rows, cols) | 0.076613 | 0.0775345 | 0.0824399 | 0.0797165 | 0.080192 | 0.179692 |
3 | colSums2(X[rows, cols]) | 0.151623 | 0.1551100 | 0.1647623 | 0.1575745 | 0.159926 | 0.473810 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colSums2(X, rows, cols) | 1.166103 | 1.141657 | 1.149390 | 1.158619 | 1.143835 | 0.7998611 |
3 | colSums2(X[rows, cols]) | 2.307808 | 2.283918 | 2.297142 | 2.290227 | 2.281138 | 2.1090655 |
Table: Benchmarking of rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 0.053853 | 0.0543835 | 0.0553172 | 0.054743 | 0.0551475 | 0.095029 |
2 | rowSums2(X, cols, rows) | 0.090008 | 0.0904435 | 0.0908911 | 0.090631 | 0.0909460 | 0.096691 |
3 | rowSums2(X[cols, rows]) | 0.130907 | 0.1357240 | 0.1411041 | 0.139254 | 0.1423040 | 0.299043 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowSums2_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowSums2(X, cols, rows) | 1.671365 | 1.663069 | 1.64309 | 1.655572 | 1.649141 | 1.017489 |
3 | rowSums2(X[cols, rows]) | 2.430821 | 2.495683 | 2.55082 | 2.543777 | 2.580425 | 3.146860 |
Figure: Benchmarking of colSums2_X_S(), colSums2(X, rows, cols)() and colSums2(X[rows, cols])() on double+1000x100 data as well as rowSums2_X_S(), rowSums2(X, cols, rows)() and rowSums2(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colSums2_X_S() and rowSums2_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2_X_S | 53.853 | 54.3835 | 55.31715 | 54.743 | 55.1475 | 95.029 |
1 | colSums2_X_S | 65.700 | 67.9140 | 71.72489 | 68.803 | 70.1080 | 224.654 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowSums2_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colSums2_X_S | 1.219988 | 1.248798 | 1.296612 | 1.256836 | 1.271282 | 2.364057 |
Figure: Benchmarking of colSums2_X_S() and rowSums2_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 23.4 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowSums2_subset')
Copyright Henrik Bengtsson. Last updated on 2019-09-10 20:53:07 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>