-
Notifications
You must be signed in to change notification settings - Fork 34
colRowRanges_subset
matrixStats: Benchmark report
This report benchmark the performance of colRanges() and rowRanges() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3182203 170.0 5709258 305.0 5709258 305.0
Vcells 6337876 48.4 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3180566 169.9 5709258 305.0 5709258 305.0
Vcells 6333239 48.4 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 0.001090 | 0.0011260 | 0.0021293 | 0.0011460 | 0.0012185 | 0.090667 |
2 | colRanges(X, rows, cols) | 0.001244 | 0.0012865 | 0.0013782 | 0.0013170 | 0.0014005 | 0.003072 |
3 | colRanges(X[rows, cols]) | 0.001613 | 0.0017385 | 0.0020145 | 0.0019135 | 0.0020670 | 0.006976 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colRanges(X, rows, cols) | 1.141284 | 1.142540 | 0.6472483 | 1.149215 | 1.149364 | 0.0338822 |
3 | colRanges(X[rows, cols]) | 1.479817 | 1.543961 | 0.9461221 | 1.669721 | 1.696348 | 0.0769409 |
Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 0.001092 | 0.0011170 | 0.0012227 | 0.001139 | 0.0012520 | 0.003600 |
2 | rowRanges(X, cols, rows) | 0.001252 | 0.0012860 | 0.0023361 | 0.001307 | 0.0014580 | 0.097008 |
3 | rowRanges(X[cols, rows]) | 0.001591 | 0.0016915 | 0.0019833 | 0.001850 | 0.0020055 | 0.005741 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges(X, cols, rows) | 1.14652 | 1.151298 | 1.910544 | 1.147498 | 1.164537 | 26.946667 |
3 | rowRanges(X[cols, rows]) | 1.45696 | 1.514324 | 1.622015 | 1.624232 | 1.601837 | 1.594722 |
Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+10x10 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanges_X_S | 1.092 | 1.117 | 1.22272 | 1.139 | 1.2520 | 3.600 |
1 | colRanges_X_S | 1.090 | 1.126 | 2.12926 | 1.146 | 1.2185 | 90.667 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanges_X_S | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.00000 |
1 | colRanges_X_S | 0.9981685 | 1.008057 | 1.741413 | 1.006146 | 0.9732428 | 25.18528 |
Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3179169 169.8 5709258 305.0 5709258 305.0
Vcells 6002108 45.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3179160 169.8 5709258 305.0 5709258 305.0
Vcells 6007186 45.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 0.010970 | 0.0113120 | 0.0115660 | 0.0115065 | 0.0117045 | 0.015767 |
2 | colRanges(X, rows, cols) | 0.013220 | 0.0137885 | 0.0141243 | 0.0140740 | 0.0143185 | 0.017172 |
3 | colRanges(X[rows, cols]) | 0.018492 | 0.0189510 | 0.0196369 | 0.0191305 | 0.0193970 | 0.051053 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanges(X, rows, cols) | 1.205105 | 1.218927 | 1.221185 | 1.223135 | 1.223333 | 1.089110 |
3 | colRanges(X[rows, cols]) | 1.685688 | 1.675301 | 1.697803 | 1.662582 | 1.657226 | 3.237965 |
Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 0.010728 | 0.0110495 | 0.0113798 | 0.0112150 | 0.0114895 | 0.015325 |
2 | rowRanges(X, cols, rows) | 0.011691 | 0.0122685 | 0.0125412 | 0.0124550 | 0.0126930 | 0.015745 |
3 | rowRanges(X[cols, rows]) | 0.018101 | 0.0186580 | 0.0195912 | 0.0189275 | 0.0192535 | 0.064185 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges(X, cols, rows) | 1.089765 | 1.110322 | 1.102051 | 1.110566 | 1.104748 | 1.027406 |
3 | rowRanges(X[cols, rows]) | 1.687267 | 1.688583 | 1.721567 | 1.687695 | 1.675747 | 4.188255 |
Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+100x100 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanges_X_S | 10.728 | 11.0495 | 11.37985 | 11.2150 | 11.4895 | 15.325 |
1 | colRanges_X_S | 10.970 | 11.3120 | 11.56605 | 11.5065 | 11.7045 | 15.767 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colRanges_X_S | 1.022558 | 1.023757 | 1.016362 | 1.025992 | 1.018713 | 1.028842 |
Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3179918 169.9 5709258 305.0 5709258 305.0
Vcells 6006174 45.9 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3179909 169.9 5709258 305.0 5709258 305.0
Vcells 6011252 45.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 0.007932 | 0.0080580 | 0.0082060 | 0.008130 | 0.0082630 | 0.011447 |
2 | colRanges(X, rows, cols) | 0.009957 | 0.0100750 | 0.0105154 | 0.010216 | 0.0104325 | 0.036373 |
3 | colRanges(X[rows, cols]) | 0.015409 | 0.0156155 | 0.0160531 | 0.015756 | 0.0159915 | 0.025840 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanges(X, rows, cols) | 1.255295 | 1.250310 | 1.281421 | 1.256581 | 1.262556 | 3.177514 |
3 | colRanges(X[rows, cols]) | 1.942637 | 1.937888 | 1.956255 | 1.938007 | 1.935314 | 2.257360 |
Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 0.008930 | 0.009213 | 0.0098794 | 0.0092835 | 0.0093795 | 0.031482 |
2 | rowRanges(X, cols, rows) | 0.010282 | 0.010612 | 0.0118905 | 0.0107725 | 0.0109395 | 0.036882 |
3 | rowRanges(X[cols, rows]) | 0.017307 | 0.017879 | 0.0192193 | 0.0180830 | 0.0183120 | 0.053687 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges(X, cols, rows) | 1.151400 | 1.151851 | 1.203561 | 1.160392 | 1.166320 | 1.171527 |
3 | rowRanges(X[cols, rows]) | 1.938074 | 1.940627 | 1.945382 | 1.947865 | 1.952343 | 1.705324 |
Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+1000x10 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 7.932 | 8.058 | 8.20602 | 8.1300 | 8.2630 | 11.447 |
2 | rowRanges_X_S | 8.930 | 9.213 | 9.87943 | 9.2835 | 9.3795 | 31.482 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.00000 |
2 | rowRanges_X_S | 1.125819 | 1.143336 | 1.203925 | 1.141882 | 1.13512 | 2.75024 |
Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3180124 169.9 5709258 305.0 5709258 305.0
Vcells 6007031 45.9 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3180115 169.9 5709258 305.0 5709258 305.0
Vcells 6012109 45.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 0.021663 | 0.0226605 | 0.0233331 | 0.0232045 | 0.0236995 | 0.029203 |
2 | colRanges(X, rows, cols) | 0.027995 | 0.0293930 | 0.0305225 | 0.0302155 | 0.0308265 | 0.067626 |
3 | colRanges(X[rows, cols]) | 0.030748 | 0.0316230 | 0.0327176 | 0.0320380 | 0.0328885 | 0.049906 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | colRanges(X, rows, cols) | 1.292296 | 1.297103 | 1.308122 | 1.30214 | 1.300724 | 2.315721 |
3 | colRanges(X[rows, cols]) | 1.419379 | 1.395512 | 1.402196 | 1.38068 | 1.387730 | 1.708934 |
Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 0.021073 | 0.0220045 | 0.0226350 | 0.0224385 | 0.0229385 | 0.038305 |
2 | rowRanges(X, cols, rows) | 0.022086 | 0.0238320 | 0.0242872 | 0.0243370 | 0.0247630 | 0.028424 |
3 | rowRanges(X[cols, rows]) | 0.029005 | 0.0297885 | 0.0303246 | 0.0301120 | 0.0305035 | 0.042943 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowRanges(X, cols, rows) | 1.048071 | 1.083051 | 1.072995 | 1.084609 | 1.079539 | 0.7420441 |
3 | rowRanges(X[cols, rows]) | 1.376406 | 1.353746 | 1.339722 | 1.341979 | 1.329795 | 1.1210808 |
Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+10x1000 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanges_X_S | 21.073 | 22.0045 | 22.63495 | 22.4385 | 22.9385 | 38.305 |
1 | colRanges_X_S | 21.663 | 22.6605 | 23.33309 | 23.2045 | 23.6995 | 29.203 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colRanges_X_S | 1.027998 | 1.029812 | 1.030844 | 1.034138 | 1.033176 | 0.7623809 |
Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3180323 169.9 5709258 305.0 5709258 305.0
Vcells 6029691 46.1 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3180314 169.9 5709258 305.0 5709258 305.0
Vcells 6079769 46.4 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 0.106644 | 0.1073510 | 0.1080100 | 0.107762 | 0.1081135 | 0.115837 |
2 | colRanges(X, rows, cols) | 0.133348 | 0.1340055 | 0.1356224 | 0.134500 | 0.1351675 | 0.220734 |
3 | colRanges(X[rows, cols]) | 0.178587 | 0.1796025 | 0.1813233 | 0.180086 | 0.1811260 | 0.202905 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanges(X, rows, cols) | 1.250403 | 1.248293 | 1.255646 | 1.248121 | 1.250237 | 1.905557 |
3 | colRanges(X[rows, cols]) | 1.674609 | 1.673040 | 1.678763 | 1.671146 | 1.675332 | 1.751642 |
Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 0.104170 | 0.1051490 | 0.1060804 | 0.1055540 | 0.1059540 | 0.127620 |
2 | rowRanges(X, cols, rows) | 0.116271 | 0.1175575 | 0.1183745 | 0.1180615 | 0.1184810 | 0.134772 |
3 | rowRanges(X[cols, rows]) | 0.167494 | 0.1690150 | 0.1712729 | 0.1696345 | 0.1706875 | 0.227266 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges(X, cols, rows) | 1.116166 | 1.118009 | 1.115894 | 1.118494 | 1.118231 | 1.056041 |
3 | rowRanges(X[cols, rows]) | 1.607891 | 1.607386 | 1.614558 | 1.607087 | 1.610958 | 1.780802 |
Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+100x1000 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanges_X_S | 104.170 | 105.149 | 106.0804 | 105.554 | 105.9540 | 127.620 |
1 | colRanges_X_S | 106.644 | 107.351 | 108.0100 | 107.762 | 108.1135 | 115.837 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanges_X_S | 1.00000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colRanges_X_S | 1.02375 | 1.020942 | 1.01819 | 1.020918 | 1.020382 | 0.9076712 |
Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3180539 169.9 5709258 305.0 5709258 305.0
Vcells 6030482 46.1 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3180530 169.9 5709258 305.0 5709258 305.0
Vcells 6080560 46.4 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 0.070667 | 0.0712605 | 0.0719798 | 0.0714400 | 0.0716405 | 0.096485 |
2 | colRanges(X, rows, cols) | 0.085166 | 0.0858685 | 0.0868319 | 0.0861460 | 0.0868310 | 0.108069 |
3 | colRanges(X[rows, cols]) | 0.134336 | 0.1348045 | 0.1371886 | 0.1351895 | 0.1365980 | 0.212129 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | colRanges(X, rows, cols) | 1.205174 | 1.204994 | 1.206338 | 1.205851 | 1.212038 | 1.12006 |
3 | colRanges(X[rows, cols]) | 1.900972 | 1.891714 | 1.905933 | 1.892350 | 1.906715 | 2.19857 |
Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 0.076880 | 0.0773960 | 0.0778467 | 0.0777270 | 0.0779475 | 0.083768 |
2 | rowRanges(X, cols, rows) | 0.090642 | 0.0913865 | 0.0918813 | 0.0915955 | 0.0918210 | 0.099784 |
3 | rowRanges(X[cols, rows]) | 0.148250 | 0.1490800 | 0.1511589 | 0.1494645 | 0.1503420 | 0.229534 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges(X, cols, rows) | 1.179006 | 1.180765 | 1.180285 | 1.178426 | 1.177985 | 1.191195 |
3 | rowRanges(X[cols, rows]) | 1.928330 | 1.926198 | 1.941751 | 1.922942 | 1.928760 | 2.740116 |
Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on integer+1000x100 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 70.667 | 71.2605 | 71.97976 | 71.440 | 71.6405 | 96.485 |
2 | rowRanges_X_S | 76.880 | 77.3960 | 77.84667 | 77.727 | 77.9475 | 83.768 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.0000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowRanges_X_S | 1.087919 | 1.0861 | 1.081508 | 1.088004 | 1.088037 | 0.8681971 |
Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3180757 169.9 5709258 305.0 5709258 305.0
Vcells 6121590 46.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3180739 169.9 5709258 305.0 5709258 305.0
Vcells 6121753 46.8 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 0.001065 | 0.0010980 | 0.0012882 | 0.0011225 | 0.0011985 | 0.013261 |
2 | colRanges(X, rows, cols) | 0.001233 | 0.0013100 | 0.0013996 | 0.0013340 | 0.0014160 | 0.004094 |
3 | colRanges(X[rows, cols]) | 0.001685 | 0.0018745 | 0.0020288 | 0.0019555 | 0.0020425 | 0.006468 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colRanges(X, rows, cols) | 1.157747 | 1.193078 | 1.086496 | 1.188419 | 1.181477 | 0.3087248 |
3 | colRanges(X[rows, cols]) | 1.582160 | 1.707195 | 1.574964 | 1.742093 | 1.704214 | 0.4877460 |
Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 0.001091 | 0.0011390 | 0.0012359 | 0.0011695 | 0.0012730 | 0.002975 |
2 | rowRanges(X, cols, rows) | 0.001228 | 0.0012930 | 0.0015560 | 0.0013200 | 0.0014225 | 0.020242 |
3 | rowRanges(X[cols, rows]) | 0.001614 | 0.0017785 | 0.0019172 | 0.0018580 | 0.0019470 | 0.004203 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges(X, cols, rows) | 1.125573 | 1.135206 | 1.258993 | 1.128688 | 1.117439 | 6.804034 |
3 | rowRanges(X[cols, rows]) | 1.479377 | 1.561457 | 1.551240 | 1.588713 | 1.529458 | 1.412773 |
Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+10x10 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.065 | 1.098 | 1.28815 | 1.1225 | 1.1985 | 13.261 |
2 | rowRanges_X_S | 1.091 | 1.139 | 1.23594 | 1.1695 | 1.2730 | 2.975 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowRanges_X_S | 1.024413 | 1.037341 | 0.959469 | 1.041871 | 1.062161 | 0.2243421 |
Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3180958 169.9 5709258 305.0 5709258 305.0
Vcells 6127545 46.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3180949 169.9 5709258 305.0 5709258 305.0
Vcells 6137623 46.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 0.008210 | 0.0085490 | 0.0087703 | 0.0087240 | 0.0088610 | 0.013393 |
2 | colRanges(X, rows, cols) | 0.011324 | 0.0117125 | 0.0122276 | 0.0118640 | 0.0122115 | 0.029017 |
3 | colRanges(X[rows, cols]) | 0.023852 | 0.0243985 | 0.0249778 | 0.0245675 | 0.0247210 | 0.058056 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanges(X, rows, cols) | 1.379293 | 1.370043 | 1.394198 | 1.359927 | 1.378118 | 2.166580 |
3 | colRanges(X[rows, cols]) | 2.905238 | 2.853960 | 2.847980 | 2.816082 | 2.789866 | 4.334802 |
Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 0.011820 | 0.0122955 | 0.0125662 | 0.012508 | 0.0126795 | 0.016145 |
2 | rowRanges(X, cols, rows) | 0.011972 | 0.0125130 | 0.0129063 | 0.012770 | 0.0129870 | 0.017451 |
3 | rowRanges(X[cols, rows]) | 0.019413 | 0.0199120 | 0.0208002 | 0.020126 | 0.0203820 | 0.080707 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges(X, cols, rows) | 1.012860 | 1.017689 | 1.027063 | 1.020947 | 1.024252 | 1.080892 |
3 | rowRanges(X[cols, rows]) | 1.642386 | 1.619454 | 1.655252 | 1.609050 | 1.607477 | 4.998885 |
Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+100x100 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 8.21 | 8.5490 | 8.77034 | 8.724 | 8.8610 | 13.393 |
2 | rowRanges_X_S | 11.82 | 12.2955 | 12.56618 | 12.508 | 12.6795 | 16.145 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | rowRanges_X_S | 1.439708 | 1.438238 | 1.432804 | 1.433746 | 1.430933 | 1.20548 |
Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3181168 169.9 5709258 305.0 5709258 305.0
Vcells 6128962 46.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3181159 169.9 5709258 305.0 5709258 305.0
Vcells 6139040 46.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 0.006826 | 0.006998 | 0.0071366 | 0.0070695 | 0.0071950 | 0.010718 |
2 | colRanges(X, rows, cols) | 0.009641 | 0.009910 | 0.0102917 | 0.0100005 | 0.0101285 | 0.035653 |
3 | colRanges(X[rows, cols]) | 0.022677 | 0.022804 | 0.0229688 | 0.0229135 | 0.0229975 | 0.027748 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanges(X, rows, cols) | 1.412394 | 1.416119 | 1.442101 | 1.414598 | 1.407714 | 3.326460 |
3 | colRanges(X[rows, cols]) | 3.322151 | 3.258645 | 3.218454 | 3.241177 | 3.196317 | 2.588916 |
Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 0.010227 | 0.0103790 | 0.0107991 | 0.0104625 | 0.010551 | 0.040578 |
2 | rowRanges(X, cols, rows) | 0.011592 | 0.0119025 | 0.0124504 | 0.0122210 | 0.012439 | 0.038032 |
3 | rowRanges(X[cols, rows]) | 0.019229 | 0.0197995 | 0.0200289 | 0.0199785 | 0.020164 | 0.026432 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowRanges(X, cols, rows) | 1.133470 | 1.146787 | 1.152904 | 1.168076 | 1.178940 | 0.9372566 |
3 | rowRanges(X[cols, rows]) | 1.880219 | 1.907650 | 1.854678 | 1.909534 | 1.911099 | 0.6513875 |
Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+1000x10 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 6.826 | 6.998 | 7.13660 | 7.0695 | 7.195 | 10.718 |
2 | rowRanges_X_S | 10.227 | 10.379 | 10.79914 | 10.4625 | 10.551 | 40.578 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges_X_S | 1.498242 | 1.483138 | 1.513205 | 1.479949 | 1.466435 | 3.785967 |
Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3181365 170.0 5709258 305.0 5709258 305.0
Vcells 6129084 46.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3181365 170.0 5709258 305.0 5709258 305.0
Vcells 6139177 46.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 0.018690 | 0.020484 | 0.0215774 | 0.0216015 | 0.0221880 | 0.031057 |
2 | colRanges(X, rows, cols) | 0.025960 | 0.028222 | 0.0295472 | 0.0291165 | 0.0299860 | 0.065011 |
3 | colRanges(X[rows, cols]) | 0.028935 | 0.030216 | 0.0311852 | 0.0312600 | 0.0319745 | 0.037561 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanges(X, rows, cols) | 1.388978 | 1.377758 | 1.369363 | 1.347892 | 1.351451 | 2.093280 |
3 | colRanges(X[rows, cols]) | 1.548154 | 1.475102 | 1.445275 | 1.447122 | 1.441072 | 1.209421 |
Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 0.021389 | 0.0226125 | 0.0231756 | 0.0230595 | 0.0232190 | 0.042653 |
2 | rowRanges(X, cols, rows) | 0.022330 | 0.0242145 | 0.0249002 | 0.0248250 | 0.0254350 | 0.030853 |
3 | rowRanges(X[cols, rows]) | 0.030004 | 0.0308745 | 0.0313960 | 0.0311435 | 0.0314465 | 0.045963 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowRanges(X, cols, rows) | 1.043995 | 1.070846 | 1.074416 | 1.076563 | 1.095439 | 0.7233489 |
3 | rowRanges(X[cols, rows]) | 1.402777 | 1.365373 | 1.354704 | 1.350571 | 1.354343 | 1.0776030 |
Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+10x1000 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 18.690 | 20.4840 | 21.57735 | 21.6015 | 22.188 | 31.057 |
2 | rowRanges_X_S | 21.389 | 22.6125 | 23.17556 | 23.0595 | 23.219 | 42.653 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges_X_S | 1.144409 | 1.10391 | 1.074069 | 1.067495 | 1.046467 | 1.373378 |
Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3181573 170.0 5709258 305.0 5709258 305.0
Vcells 6174555 47.2 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3181564 170.0 5709258 305.0 5709258 305.0
Vcells 6274633 47.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 0.100562 | 0.1012370 | 0.1019546 | 0.101508 | 0.1019375 | 0.115033 |
2 | colRanges(X, rows, cols) | 0.134218 | 0.1350955 | 0.1364043 | 0.135314 | 0.1356110 | 0.233219 |
3 | colRanges(X[rows, cols]) | 0.248367 | 0.2496655 | 0.2543097 | 0.250348 | 0.2521670 | 0.365943 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | colRanges(X, rows, cols) | 1.334679 | 1.334448 | 1.337892 | 1.333038 | 1.330335 | 2.02741 |
3 | colRanges(X[rows, cols]) | 2.469790 | 2.466149 | 2.494343 | 2.466288 | 2.473741 | 3.18120 |
Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 0.116119 | 0.116875 | 0.1177092 | 0.1171680 | 0.117585 | 0.138375 |
2 | rowRanges(X, cols, rows) | 0.135232 | 0.136289 | 0.1374557 | 0.1365975 | 0.137253 | 0.179292 |
3 | rowRanges(X[cols, rows]) | 0.186056 | 0.187095 | 0.1905034 | 0.1879500 | 0.189161 | 0.304286 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges(X, cols, rows) | 1.164598 | 1.166109 | 1.167757 | 1.165826 | 1.167266 | 1.295697 |
3 | rowRanges(X[cols, rows]) | 1.602287 | 1.600813 | 1.618424 | 1.604107 | 1.608717 | 2.198996 |
Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+100x1000 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 100.562 | 101.237 | 101.9546 | 101.508 | 101.9375 | 115.033 |
2 | rowRanges_X_S | 116.119 | 116.875 | 117.7092 | 117.168 | 117.5850 | 138.375 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges_X_S | 1.154701 | 1.154469 | 1.154526 | 1.154274 | 1.153501 | 1.202916 |
Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3181789 170.0 5709258 305.0 5709258 305.0
Vcells 6174702 47.2 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanges_X_S = colRanges(X_S, na.rm = FALSE), `colRanges(X, rows, cols)` = colRanges(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanges(X[rows, cols])` = colRanges(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3181780 170.0 5709258 305.0 5709258 305.0
Vcells 6274780 47.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanges_X_S = rowRanges(X_S, na.rm = FALSE), `rowRanges(X, cols, rows)` = rowRanges(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanges(X[cols, rows])` = rowRanges(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 0.060877 | 0.0611645 | 0.0616153 | 0.061334 | 0.0616005 | 0.070619 |
2 | colRanges(X, rows, cols) | 0.085854 | 0.0863455 | 0.0866055 | 0.086484 | 0.0866800 | 0.090331 |
3 | colRanges(X[rows, cols]) | 0.130192 | 0.1312110 | 0.1345383 | 0.131964 | 0.1327190 | 0.265479 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanges(X, rows, cols) | 1.410286 | 1.411693 | 1.405585 | 1.410050 | 1.407131 | 1.279132 |
3 | colRanges(X[rows, cols]) | 2.138607 | 2.145215 | 2.183523 | 2.151564 | 2.154512 | 3.759314 |
Table: Benchmarking of rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 0.089140 | 0.0896180 | 0.0900077 | 0.0898030 | 0.0900340 | 0.095609 |
2 | rowRanges(X, cols, rows) | 0.106737 | 0.1072765 | 0.1078168 | 0.1076055 | 0.1078565 | 0.118149 |
3 | rowRanges(X[cols, rows]) | 0.163829 | 0.1649710 | 0.1681752 | 0.1655475 | 0.1667735 | 0.306344 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges(X, cols, rows) | 1.197409 | 1.197042 | 1.197862 | 1.198239 | 1.197953 | 1.235752 |
3 | rowRanges(X[cols, rows]) | 1.837884 | 1.840824 | 1.868453 | 1.843452 | 1.852339 | 3.204134 |
Figure: Benchmarking of colRanges_X_S(), colRanges(X, rows, cols)() and colRanges(X[rows, cols])() on double+1000x100 data as well as rowRanges_X_S(), rowRanges(X, cols, rows)() and rowRanges(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 60.877 | 61.1645 | 61.61526 | 61.334 | 61.6005 | 70.619 |
2 | rowRanges_X_S | 89.140 | 89.6180 | 90.00770 | 89.803 | 90.0340 | 95.609 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanges_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanges_X_S | 1.464264 | 1.465196 | 1.460802 | 1.464163 | 1.461579 | 1.353871 |
Figure: Benchmarking of colRanges_X_S() and rowRanges_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 23.23 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowRanges_subset')
Copyright Dongcan Jiang. Last updated on 2019-09-10 20:51:03 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>