-
Notifications
You must be signed in to change notification settings - Fork 34
mean2_subset
matrixStats: Benchmark report
This report benchmark the performance of mean2() on subsetted computation.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3237341 172.9 5709258 305 5709258 305.0
Vcells 12940607 98.8 28038728 214 87357391 666.5
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 0.001391 | 0.0014275 | 0.0014746 | 0.0014445 | 0.0014750 | 0.001891 |
2 | mean2_x_S_no_refine | 0.001392 | 0.0014325 | 0.0014915 | 0.0014470 | 0.0015025 | 0.002195 |
4 | mean2_no_refine(x, idxs) | 0.002036 | 0.0020680 | 0.0021376 | 0.0020810 | 0.0021125 | 0.004911 |
3 | mean2(x, idxs) | 0.002022 | 0.0020710 | 0.0021228 | 0.0020830 | 0.0021230 | 0.002821 |
5 | mean2(x[idxs]) | 0.002792 | 0.0029155 | 0.0030071 | 0.0029735 | 0.0030495 | 0.003842 |
6 | mean2_no_refine(x[idxs]) | 0.002820 | 0.0029085 | 0.0039671 | 0.0029995 | 0.0031200 | 0.096489 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | mean2_x_S_no_refine | 1.000719 | 1.003503 | 1.011509 | 1.001731 | 1.018644 | 1.160762 |
4 | mean2_no_refine(x, idxs) | 1.463695 | 1.448686 | 1.449683 | 1.440637 | 1.432203 | 2.597039 |
3 | mean2(x, idxs) | 1.453631 | 1.450788 | 1.439660 | 1.442022 | 1.439322 | 1.491803 |
5 | mean2(x[idxs]) | 2.007189 | 2.042382 | 2.039327 | 2.058498 | 2.067458 | 2.031729 |
6 | mean2_no_refine(x[idxs]) | 2.027318 | 2.037478 | 2.690380 | 2.076497 | 2.115254 | 51.025383 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3233777 172.8 5709258 305 5709258 305.0
Vcells 11808939 90.1 28038728 214 87357391 666.5
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 0.007993 | 0.0080635 | 0.0082027 | 0.0081170 | 0.0081970 | 0.011061 |
2 | mean2_x_S_no_refine | 0.007994 | 0.0080785 | 0.0083935 | 0.0081425 | 0.0082375 | 0.031185 |
4 | mean2_no_refine(x, idxs) | 0.013556 | 0.0136325 | 0.0137183 | 0.0136720 | 0.0137450 | 0.014743 |
3 | mean2(x, idxs) | 0.013537 | 0.0136295 | 0.0137370 | 0.0136985 | 0.0137950 | 0.014099 |
5 | mean2(x[idxs]) | 0.019365 | 0.0197740 | 0.0202089 | 0.0199010 | 0.0201385 | 0.033319 |
6 | mean2_no_refine(x[idxs]) | 0.019468 | 0.0198135 | 0.0203902 | 0.0199815 | 0.0201645 | 0.032497 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | mean2_x_S_no_refine | 1.000125 | 1.001860 | 1.023257 | 1.003142 | 1.004941 | 2.819365 |
4 | mean2_no_refine(x, idxs) | 1.695984 | 1.690643 | 1.672411 | 1.684366 | 1.676833 | 1.332881 |
3 | mean2(x, idxs) | 1.693607 | 1.690271 | 1.674683 | 1.687631 | 1.682933 | 1.274659 |
5 | mean2(x[idxs]) | 2.422745 | 2.452285 | 2.463677 | 2.451768 | 2.456813 | 3.012296 |
6 | mean2_no_refine(x[idxs]) | 2.435631 | 2.457184 | 2.485788 | 2.461685 | 2.459985 | 2.937980 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3233876 172.8 5709258 305 5709258 305.0
Vcells 11872517 90.6 28038728 214 87357391 666.5
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 0.073192 | 0.0733580 | 0.0735297 | 0.0734010 | 0.0735615 | 0.076538 |
2 | mean2_x_S_no_refine | 0.073240 | 0.0733670 | 0.0739529 | 0.0734355 | 0.0735930 | 0.100184 |
4 | mean2_no_refine(x, idxs) | 0.139412 | 0.1395635 | 0.1418755 | 0.1396525 | 0.1398425 | 0.216691 |
3 | mean2(x, idxs) | 0.139339 | 0.1395675 | 0.1402904 | 0.1396880 | 0.1398400 | 0.163529 |
5 | mean2(x[idxs]) | 0.222900 | 0.2238220 | 0.2259060 | 0.2243030 | 0.2255700 | 0.293821 |
6 | mean2_no_refine(x[idxs]) | 0.223118 | 0.2237985 | 0.2253905 | 0.2243285 | 0.2250305 | 0.259972 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | mean2_x_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | mean2_x_S_no_refine | 1.000656 | 1.000123 | 1.005756 | 1.000470 | 1.000428 | 1.308945 |
4 | mean2_no_refine(x, idxs) | 1.904744 | 1.902499 | 1.929499 | 1.902597 | 1.901028 | 2.831156 |
3 | mean2(x, idxs) | 1.903746 | 1.902553 | 1.907943 | 1.903080 | 1.900994 | 2.136573 |
5 | mean2(x[idxs]) | 3.045415 | 3.051092 | 3.072310 | 3.055858 | 3.066414 | 3.838891 |
6 | mean2_no_refine(x[idxs]) | 3.048393 | 3.050772 | 3.065300 | 3.056205 | 3.059080 | 3.396640 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3233975 172.8 5709258 305 5709258 305.0
Vcells 12502795 95.4 28038728 214 87357391 666.5
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 0.819987 | 0.864055 | 0.8904314 | 0.872912 | 0.9101030 | 1.059168 |
1 | mean2_x_S | 0.746681 | 0.864348 | 0.8836420 | 0.874443 | 0.9106205 | 1.020441 |
3 | mean2(x, idxs) | 2.070680 | 2.352730 | 2.4511763 | 2.445139 | 2.5226930 | 2.946063 |
4 | mean2_no_refine(x, idxs) | 2.045235 | 2.341083 | 2.4554177 | 2.446915 | 2.5772595 | 2.792526 |
5 | mean2(x[idxs]) | 3.233744 | 4.660319 | 4.9976479 | 4.812597 | 5.0010920 | 15.858845 |
6 | mean2_no_refine(x[idxs]) | 3.281051 | 4.671983 | 4.9904019 | 4.823245 | 4.9698770 | 16.243384 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | mean2_x_S | 0.910601 | 1.000339 | 0.9923752 | 1.001754 | 1.000569 | 0.9634364 |
3 | mean2(x, idxs) | 2.525260 | 2.722893 | 2.7527964 | 2.801129 | 2.771876 | 2.7814879 |
4 | mean2_no_refine(x, idxs) | 2.494229 | 2.709415 | 2.7575596 | 2.803164 | 2.831833 | 2.6365279 |
5 | mean2(x[idxs]) | 3.943653 | 5.393544 | 5.6126142 | 5.513267 | 5.495083 | 14.9729269 |
6 | mean2_no_refine(x[idxs]) | 4.001345 | 5.407044 | 5.6044766 | 5.525465 | 5.460785 | 15.3359845 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3234071 172.8 5709258 305.0 5709258 305.0
Vcells 18803453 143.5 33726473 257.4 87357391 666.5
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 9.053797 | 12.12507 | 13.27875 | 12.24600 | 16.13622 | 18.12965 |
1 | mean2_x_S | 9.069925 | 11.65445 | 13.40851 | 12.38970 | 16.42170 | 18.62974 |
4 | mean2_no_refine(x, idxs) | 80.103785 | 95.49647 | 99.35035 | 97.53584 | 104.74655 | 117.62011 |
3 | mean2(x, idxs) | 79.685783 | 96.42031 | 100.16765 | 99.56728 | 105.24282 | 111.31561 |
5 | mean2(x[idxs]) | 128.063078 | 135.78485 | 146.60189 | 141.03012 | 145.42353 | 418.95981 |
6 | mean2_no_refine(x[idxs]) | 114.357685 | 136.14016 | 140.93776 | 141.52260 | 145.64412 | 165.26707 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | mean2_x_S | 1.001781 | 0.9611864 | 1.009772 | 1.011735 | 1.017692 | 1.027584 |
4 | mean2_no_refine(x, idxs) | 8.847535 | 7.8759513 | 7.481908 | 7.964710 | 6.491391 | 6.487721 |
3 | mean2(x, idxs) | 8.801366 | 7.9521435 | 7.543457 | 8.130596 | 6.522146 | 6.139976 |
5 | mean2(x[idxs]) | 14.144682 | 11.1986848 | 11.040342 | 11.516423 | 9.012240 | 23.109094 |
6 | mean2_no_refine(x[idxs]) | 12.630909 | 11.2279881 | 10.613786 | 11.556639 | 9.025911 | 9.115844 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on integer+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> rvector <- function(n, mode = c("logical", "double", "integer"), range = c(-100, +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ x
+ }
> rvectors <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rvector(n = scale * 100, ...)
+ data[[2]] <- rvector(n = scale * 1000, ...)
+ data[[3]] <- rvector(n = scale * 10000, ...)
+ data[[4]] <- rvector(n = scale * 1e+05, ...)
+ data[[5]] <- rvector(n = scale * 1e+06, ...)
+ names(data) <- sprintf("n = %d", sapply(data, FUN = length))
+ data
+ }
> data <- rvectors(mode = mode)
> x <- data[["n = 1000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3234179 172.8 5709258 305.0 5709258 305.0
Vcells 17360460 132.5 40551767 309.4 87357391 666.5
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 0.001412 | 0.0014460 | 0.0014958 | 0.0014610 | 0.0014805 | 0.002581 |
4 | mean2_no_refine(x, idxs) | 0.002062 | 0.0020965 | 0.0021521 | 0.0021165 | 0.0021555 | 0.002529 |
1 | mean2_x_S | 0.002132 | 0.0021630 | 0.0022130 | 0.0021830 | 0.0022170 | 0.002508 |
3 | mean2(x, idxs) | 0.002782 | 0.0028230 | 0.0028867 | 0.0028415 | 0.0029060 | 0.004155 |
6 | mean2_no_refine(x[idxs]) | 0.002972 | 0.0031115 | 0.0034228 | 0.0031920 | 0.0033410 | 0.017197 |
5 | mean2(x[idxs]) | 0.003691 | 0.0038675 | 0.0040252 | 0.0039535 | 0.0041580 | 0.005126 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
4 | mean2_no_refine(x, idxs) | 1.460340 | 1.449862 | 1.438747 | 1.448665 | 1.455927 | 0.9798528 |
1 | mean2_x_S | 1.509915 | 1.495851 | 1.479460 | 1.494182 | 1.497467 | 0.9717164 |
3 | mean2(x, idxs) | 1.970255 | 1.952282 | 1.929779 | 1.944901 | 1.962850 | 1.6098411 |
6 | mean2_no_refine(x[idxs]) | 2.104816 | 2.151798 | 2.288177 | 2.184805 | 2.256670 | 6.6629213 |
5 | mean2(x[idxs]) | 2.614023 | 2.674620 | 2.690898 | 2.706023 | 2.808511 | 1.9860519 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 1000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3234272 172.8 5709258 305.0 5709258 305.0
Vcells 17370413 132.6 40551767 309.4 87357391 666.5
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 10000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 0.008046 | 0.0082290 | 0.0084524 | 0.0082940 | 0.0083945 | 0.021646 |
4 | mean2_no_refine(x, idxs) | 0.013675 | 0.0138290 | 0.0139197 | 0.0139055 | 0.0139785 | 0.014878 |
1 | mean2_x_S | 0.015307 | 0.0154260 | 0.0155253 | 0.0155170 | 0.0156065 | 0.015898 |
3 | mean2(x, idxs) | 0.020930 | 0.0210695 | 0.0212282 | 0.0211535 | 0.0212655 | 0.024405 |
6 | mean2_no_refine(x[idxs]) | 0.021730 | 0.0222470 | 0.0230560 | 0.0224820 | 0.0227340 | 0.046212 |
5 | mean2(x[idxs]) | 0.029109 | 0.0295505 | 0.0299383 | 0.0297495 | 0.0299955 | 0.035199 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
4 | mean2_no_refine(x, idxs) | 1.699602 | 1.680520 | 1.646840 | 1.676573 | 1.665198 | 0.6873325 |
1 | mean2_x_S | 1.902436 | 1.874590 | 1.836793 | 1.870871 | 1.859134 | 0.7344544 |
3 | mean2(x, idxs) | 2.601293 | 2.560396 | 2.511502 | 2.550458 | 2.533266 | 1.1274600 |
6 | mean2_no_refine(x[idxs]) | 2.700721 | 2.703488 | 2.727750 | 2.710634 | 2.708202 | 2.1348979 |
5 | mean2(x[idxs]) | 3.617822 | 3.591020 | 3.541990 | 3.586870 | 3.573233 | 1.6261203 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 10000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 100000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3234371 172.8 5709258 305.0 5709258 305.0
Vcells 17465522 133.3 40551767 309.4 87357391 666.5
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 100000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 0.073383 | 0.0735780 | 0.0748593 | 0.0739205 | 0.0747670 | 0.112598 |
1 | mean2_x_S | 0.145355 | 0.1455485 | 0.1467679 | 0.1458990 | 0.1471985 | 0.159998 |
4 | mean2_no_refine(x, idxs) | 0.151656 | 0.1520600 | 0.1542243 | 0.1522575 | 0.1524755 | 0.310611 |
3 | mean2(x, idxs) | 0.251454 | 0.2519835 | 0.2533889 | 0.2521780 | 0.2524295 | 0.288298 |
6 | mean2_no_refine(x[idxs]) | 0.257278 | 0.2661055 | 0.3567621 | 0.3921090 | 0.3957230 | 0.410325 |
5 | mean2(x[idxs]) | 0.331040 | 0.4081495 | 0.4351360 | 0.4647425 | 0.4678355 | 0.514656 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | mean2_x_S | 1.980772 | 1.978152 | 1.960583 | 1.973728 | 1.968763 | 1.420967 |
4 | mean2_no_refine(x, idxs) | 2.066637 | 2.066650 | 2.060188 | 2.059747 | 2.039342 | 2.758584 |
3 | mean2(x, idxs) | 3.426597 | 3.424713 | 3.384868 | 3.411476 | 3.376215 | 2.560418 |
6 | mean2_no_refine(x[idxs]) | 3.505962 | 3.616645 | 4.765767 | 5.304469 | 5.292750 | 3.644159 |
5 | mean2(x[idxs]) | 4.511127 | 5.547168 | 5.812717 | 6.287058 | 6.257246 | 4.570738 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 100000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 1000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3234470 172.8 5709258 305.0 5709258 305.0
Vcells 18410589 140.5 40551767 309.4 87357391 666.5
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 1000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.109013 | 1.205344 | 1.248485 | 1.247311 | 1.268617 | 1.450124 |
1 | mean2_x_S | 2.270884 | 2.405847 | 2.495035 | 2.488111 | 2.528594 | 2.798773 |
4 | mean2_no_refine(x, idxs) | 5.103129 | 5.342005 | 5.462168 | 5.455947 | 5.544610 | 6.269207 |
6 | mean2_no_refine(x[idxs]) | 6.055889 | 7.278324 | 8.882099 | 9.561957 | 9.753134 | 18.643234 |
3 | mean2(x, idxs) | 8.936119 | 9.448269 | 9.695674 | 9.636117 | 9.842493 | 11.401684 |
5 | mean2(x[idxs]) | 7.863381 | 8.747281 | 10.445387 | 10.761168 | 11.028589 | 20.290996 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | mean2_x_S | 2.047662 | 1.995984 | 1.998450 | 1.994780 | 1.993190 | 1.930023 |
4 | mean2_no_refine(x, idxs) | 4.601505 | 4.431934 | 4.375036 | 4.374168 | 4.370596 | 4.323221 |
6 | mean2_no_refine(x[idxs]) | 5.460611 | 6.038379 | 7.114300 | 7.666057 | 7.688008 | 12.856303 |
3 | mean2(x, idxs) | 8.057723 | 7.838649 | 7.765950 | 7.725513 | 7.758447 | 7.862558 |
5 | mean2(x[idxs]) | 7.090432 | 7.257083 | 8.366448 | 8.627494 | 8.693399 | 13.992594 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 1000000 data. Outliers are displayed as crosses. Times are in milliseconds.
> x <- data[["n = 10000000"]]
> idxs <- sample.int(length(x), size = length(x) * 0.7)
> x_S <- x[idxs]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3234569 172.8 5709258 305.0 5709258 305.0
Vcells 27861305 212.6 48742120 371.9 87357391 666.5
> stats <- microbenchmark(mean2_x_S = mean2(x_S, refine = TRUE), mean2_x_S_no_refine = mean2(x_S, refine = FALSE),
+ `mean2(x, idxs)` = mean2(x, idxs = idxs, refine = TRUE), `mean2_no_refine(x, idxs)` = mean2(x,
+ idxs = idxs, refine = FALSE), `mean2(x[idxs])` = mean2(x[idxs], refine = TRUE), `mean2_no_refine(x[idxs])` = mean2(x[idxs],
+ refine = FALSE), unit = "ms")
Table: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 10000000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 7.416486 | 10.97654 | 13.64744 | 12.08673 | 18.71371 | 21.16901 |
1 | mean2_x_S | 15.439379 | 20.59652 | 25.01414 | 23.11340 | 32.18062 | 36.78187 |
4 | mean2_no_refine(x, idxs) | 95.059996 | 132.90154 | 143.80882 | 140.24072 | 160.59192 | 189.81906 |
6 | mean2_no_refine(x[idxs]) | 159.109667 | 167.80084 | 180.08796 | 173.82238 | 186.44614 | 452.33853 |
5 | mean2(x[idxs]) | 169.306052 | 179.77445 | 199.31009 | 193.45681 | 198.79157 | 471.73459 |
3 | mean2(x, idxs) | 230.929040 | 297.02068 | 310.27159 | 309.52590 | 325.38551 | 386.11923 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | mean2_x_S_no_refine | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | mean2_x_S | 2.081765 | 1.876413 | 1.832882 | 1.912295 | 1.719628 | 1.737534 |
4 | mean2_no_refine(x, idxs) | 12.817390 | 12.107783 | 10.537422 | 11.602868 | 8.581514 | 8.966837 |
6 | mean2_no_refine(x[idxs]) | 21.453511 | 15.287228 | 13.195733 | 14.381259 | 9.963080 | 21.367959 |
5 | mean2(x[idxs]) | 22.828338 | 16.378064 | 14.604212 | 16.005720 | 10.622780 | 22.284206 |
3 | mean2(x, idxs) | 31.137258 | 27.059596 | 22.734786 | 25.608739 | 17.387551 | 18.239834 |
Figure: Benchmarking of mean2_x_S(), mean2_x_S_no_refine(), mean2(x, idxs)(), mean2_no_refine(x, idxs)(), mean2(x[idxs])() and mean2_no_refine(x[idxs])() on double+n = 10000000 data. Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 2.85 mins.
To reproduce this report, do:
html <- matrixStats:::benchmark('mean2_subset')
Copyright Dongcan Jiang. Last updated on 2019-09-10 21:06:50 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>