-
Notifications
You must be signed in to change notification settings - Fork 34
colRowRanks_subset
matrixStats: Benchmark report
This report benchmark the performance of colRanks() and rowRanks() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3189675 170.4 5709258 305.0 5709258 305.0
Vcells 6391544 48.8 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks_X_S = colRanks(X_S, na.rm = FALSE), `colRanks(X, rows, cols)` = colRanks(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanks(X[rows, cols])` = colRanks(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3188374 170.3 5709258 305.0 5709258 305.0
Vcells 6387831 48.8 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks_X_S = rowRanks(X_S, na.rm = FALSE), `rowRanks(X, cols, rows)` = rowRanks(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanks(X[cols, rows])` = rowRanks(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 0.006350 | 0.0066575 | 0.0085987 | 0.0068765 | 0.0070935 | 0.172760 |
2 | colRanks(X, rows, cols) | 0.006669 | 0.0070055 | 0.0071930 | 0.0071355 | 0.0073320 | 0.009230 |
3 | colRanks(X[rows, cols]) | 0.007167 | 0.0075945 | 0.0078656 | 0.0077860 | 0.0079945 | 0.013184 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colRanks(X, rows, cols) | 1.050236 | 1.052272 | 0.8365305 | 1.037664 | 1.033622 | 0.0534267 |
3 | colRanks(X[rows, cols]) | 1.128661 | 1.140743 | 0.9147438 | 1.132262 | 1.127018 | 0.0763140 |
Table: Benchmarking of rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 0.002687 | 0.0030055 | 0.0031705 | 0.0031265 | 0.0032875 | 0.005524 |
2 | rowRanks(X, cols, rows) | 0.002975 | 0.0031885 | 0.0044617 | 0.0032855 | 0.0034170 | 0.114276 |
3 | rowRanks(X[cols, rows]) | 0.003320 | 0.0037140 | 0.0038791 | 0.0038280 | 0.0039815 | 0.005509 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowRanks(X, cols, rows) | 1.107183 | 1.060888 | 1.407260 | 1.050856 | 1.039392 | 20.6871832 |
3 | rowRanks(X[cols, rows]) | 1.235579 | 1.235734 | 1.223493 | 1.224372 | 1.211103 | 0.9972846 |
Figure: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on integer+10x10 data as well as rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks_X_S() and rowRanks_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 2.687 | 3.0055 | 3.17048 | 3.1265 | 3.2875 | 5.524 |
1 | colRanks_X_S | 6.350 | 6.6575 | 8.59867 | 6.8765 | 7.0935 | 172.760 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
1 | colRanks_X_S | 2.36323 | 2.215106 | 2.712104 | 2.199424 | 2.157719 | 31.27444 |
Figure: Benchmarking of colRanks_X_S() and rowRanks_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3187051 170.3 5709258 305.0 5709258 305.0
Vcells 6056825 46.3 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks_X_S = colRanks(X_S, na.rm = FALSE), `colRanks(X, rows, cols)` = colRanks(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanks(X[rows, cols])` = colRanks(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3187042 170.3 5709258 305.0 5709258 305.0
Vcells 6061903 46.3 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks_X_S = rowRanks(X_S, na.rm = FALSE), `rowRanks(X, cols, rows)` = rowRanks(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanks(X[cols, rows])` = rowRanks(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 0.146100 | 0.1470375 | 0.1479697 | 0.1476670 | 0.148275 | 0.164900 |
2 | colRanks(X, rows, cols) | 0.152015 | 0.1531385 | 0.1540843 | 0.1537925 | 0.154551 | 0.162070 |
3 | colRanks(X[rows, cols]) | 0.154721 | 0.1560120 | 0.1575690 | 0.1566260 | 0.157623 | 0.214578 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colRanks(X, rows, cols) | 1.040486 | 1.041493 | 1.041323 | 1.041482 | 1.042327 | 0.9828381 |
3 | colRanks(X[rows, cols]) | 1.059008 | 1.061036 | 1.064874 | 1.060670 | 1.063045 | 1.3012614 |
Table: Benchmarking of rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 0.132711 | 0.1344080 | 0.1353779 | 0.1348785 | 0.1354535 | 0.158191 |
2 | rowRanks(X, cols, rows) | 0.134021 | 0.1358705 | 0.1368152 | 0.1364685 | 0.1372090 | 0.151167 |
3 | rowRanks(X[cols, rows]) | 0.141178 | 0.1427820 | 0.1440559 | 0.1433960 | 0.1440355 | 0.182017 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanks(X, cols, rows) | 1.009871 | 1.010881 | 1.010617 | 1.011788 | 1.012960 | 0.955598 |
3 | rowRanks(X[cols, rows]) | 1.063800 | 1.062303 | 1.064102 | 1.063149 | 1.063357 | 1.150615 |
Figure: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on integer+100x100 data as well as rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks_X_S() and rowRanks_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 132.711 | 134.4080 | 135.3779 | 134.8785 | 135.4535 | 158.191 |
1 | colRanks_X_S | 146.100 | 147.0375 | 147.9697 | 147.6670 | 148.2750 | 164.900 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colRanks_X_S | 1.100888 | 1.093964 | 1.093012 | 1.094815 | 1.094656 | 1.042411 |
Figure: Benchmarking of colRanks_X_S() and rowRanks_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3187804 170.3 5709258 305.0 5709258 305.0
Vcells 6060876 46.3 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks_X_S = colRanks(X_S, na.rm = FALSE), `colRanks(X, rows, cols)` = colRanks(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanks(X[rows, cols])` = colRanks(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3187795 170.3 5709258 305.0 5709258 305.0
Vcells 6065954 46.3 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks_X_S = rowRanks(X_S, na.rm = FALSE), `rowRanks(X, cols, rows)` = rowRanks(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanks(X[cols, rows])` = rowRanks(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 0.191569 | 0.1933455 | 0.1941410 | 0.1937770 | 0.194706 | 0.201388 |
2 | colRanks(X, rows, cols) | 0.195026 | 0.1968875 | 0.1984131 | 0.1974230 | 0.198151 | 0.257300 |
3 | colRanks(X[rows, cols]) | 0.200973 | 0.2023190 | 0.2033049 | 0.2028635 | 0.203853 | 0.212349 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanks(X, rows, cols) | 1.018046 | 1.018320 | 1.022005 | 1.018815 | 1.017693 | 1.277633 |
3 | colRanks(X[rows, cols]) | 1.049089 | 1.046412 | 1.047202 | 1.046892 | 1.046979 | 1.054427 |
Table: Benchmarking of rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 0.180956 | 0.1820075 | 0.1833657 | 0.1826700 | 0.1833715 | 0.219384 |
2 | rowRanks(X, cols, rows) | 0.183317 | 0.1844490 | 0.1854869 | 0.1851870 | 0.1856900 | 0.197945 |
3 | rowRanks(X[cols, rows]) | 0.190575 | 0.1917190 | 0.1927902 | 0.1924555 | 0.1932595 | 0.200437 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowRanks(X, cols, rows) | 1.013047 | 1.013414 | 1.011568 | 1.013779 | 1.012644 | 0.9022764 |
3 | rowRanks(X[cols, rows]) | 1.053157 | 1.053358 | 1.051397 | 1.053569 | 1.053923 | 0.9136355 |
Figure: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on integer+1000x10 data as well as rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks_X_S() and rowRanks_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 180.956 | 182.0075 | 183.3657 | 182.670 | 183.3715 | 219.384 |
1 | colRanks_X_S | 191.569 | 193.3455 | 194.1410 | 193.777 | 194.7060 | 201.388 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colRanks_X_S | 1.05865 | 1.062294 | 1.058764 | 1.060804 | 1.061812 | 0.9179703 |
Figure: Benchmarking of colRanks_X_S() and rowRanks_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3188010 170.3 5709258 305.0 5709258 305.0
Vcells 6061730 46.3 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks_X_S = colRanks(X_S, na.rm = FALSE), `colRanks(X, rows, cols)` = colRanks(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanks(X[rows, cols])` = colRanks(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3188001 170.3 5709258 305.0 5709258 305.0
Vcells 6066808 46.3 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks_X_S = rowRanks(X_S, na.rm = FALSE), `rowRanks(X, cols, rows)` = rowRanks(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanks(X[cols, rows])` = rowRanks(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 0.082267 | 0.0838140 | 0.0850312 | 0.0848640 | 0.0859740 | 0.091612 |
2 | colRanks(X, rows, cols) | 0.089568 | 0.0924520 | 0.0940159 | 0.0932900 | 0.0940160 | 0.160850 |
3 | colRanks(X[rows, cols]) | 0.091614 | 0.0932985 | 0.0947615 | 0.0948925 | 0.0955365 | 0.102056 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanks(X, rows, cols) | 1.088748 | 1.103061 | 1.105664 | 1.099288 | 1.093540 | 1.755774 |
3 | colRanks(X[rows, cols]) | 1.113618 | 1.113161 | 1.114433 | 1.118171 | 1.111225 | 1.114003 |
Table: Benchmarking of rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 0.071534 | 0.0730685 | 0.0750661 | 0.0747220 | 0.0754385 | 0.114470 |
2 | rowRanks(X, cols, rows) | 0.075961 | 0.0782735 | 0.0794601 | 0.0792075 | 0.0799975 | 0.093830 |
3 | rowRanks(X[cols, rows]) | 0.079881 | 0.0814475 | 0.0825500 | 0.0823015 | 0.0833625 | 0.093299 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowRanks(X, cols, rows) | 1.061887 | 1.071235 | 1.058536 | 1.060029 | 1.060433 | 0.8196907 |
3 | rowRanks(X[cols, rows]) | 1.116686 | 1.114673 | 1.099697 | 1.101436 | 1.105039 | 0.8150520 |
Figure: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on integer+10x1000 data as well as rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks_X_S() and rowRanks_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 71.534 | 73.0685 | 75.06606 | 74.722 | 75.4385 | 114.470 |
1 | colRanks_X_S | 82.267 | 83.8140 | 85.03116 | 84.864 | 85.9740 | 91.612 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 |
1 | colRanks_X_S | 1.150041 | 1.147061 | 1.132751 | 1.13573 | 1.139657 | 0.8003145 |
Figure: Benchmarking of colRanks_X_S() and rowRanks_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3188209 170.3 5709258 305.0 5709258 305.0
Vcells 6084391 46.5 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks_X_S = colRanks(X_S, na.rm = FALSE), `colRanks(X, rows, cols)` = colRanks(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanks(X[rows, cols])` = colRanks(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3188200 170.3 5709258 305.0 5709258 305.0
Vcells 6134469 46.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks_X_S = rowRanks(X_S, na.rm = FALSE), `rowRanks(X, cols, rows)` = rowRanks(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanks(X[cols, rows])` = rowRanks(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.411227 | 1.421110 | 1.492093 | 1.527478 | 1.536074 | 1.753078 |
2 | colRanks(X, rows, cols) | 1.460636 | 1.472684 | 1.633215 | 1.581341 | 1.592728 | 10.278399 |
3 | colRanks(X[rows, cols]) | 1.484481 | 1.496355 | 1.601260 | 1.653813 | 1.665463 | 1.830711 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanks(X, rows, cols) | 1.035011 | 1.036292 | 1.094580 | 1.035262 | 1.036882 | 5.863059 |
3 | colRanks(X[rows, cols]) | 1.051908 | 1.052948 | 1.073164 | 1.082708 | 1.084234 | 1.044284 |
Table: Benchmarking of rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 1.332971 | 1.362006 | 1.384078 | 1.368561 | 1.413801 | 1.445405 |
2 | rowRanks(X, cols, rows) | 1.344751 | 1.380868 | 1.402368 | 1.385862 | 1.432033 | 1.532496 |
3 | rowRanks(X[cols, rows]) | 1.424064 | 1.441168 | 1.471645 | 1.444830 | 1.496293 | 1.836529 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanks(X, cols, rows) | 1.008837 | 1.013848 | 1.013214 | 1.012642 | 1.012896 | 1.060254 |
3 | rowRanks(X[cols, rows]) | 1.068338 | 1.058121 | 1.063267 | 1.055730 | 1.058348 | 1.270598 |
Figure: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on integer+100x1000 data as well as rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks_X_S() and rowRanks_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 1.332971 | 1.362006 | 1.384078 | 1.368561 | 1.413801 | 1.445405 |
1 | colRanks_X_S | 1.411227 | 1.421110 | 1.492093 | 1.527478 | 1.536074 | 1.753078 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colRanks_X_S | 1.058708 | 1.043394 | 1.078041 | 1.116121 | 1.086485 | 1.212863 |
Figure: Benchmarking of colRanks_X_S() and rowRanks_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3188425 170.3 5709258 305.0 5709258 305.0
Vcells 6085174 46.5 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks_X_S = colRanks(X_S, na.rm = FALSE), `colRanks(X, rows, cols)` = colRanks(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanks(X[rows, cols])` = colRanks(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3188416 170.3 5709258 305.0 5709258 305.0
Vcells 6135252 46.9 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks_X_S = rowRanks(X_S, na.rm = FALSE), `rowRanks(X, cols, rows)` = rowRanks(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanks(X[cols, rows])` = rowRanks(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.853096 | 1.861617 | 1.913827 | 1.868316 | 1.969691 | 2.282829 |
2 | colRanks(X, rows, cols) | 1.870430 | 1.879618 | 1.928878 | 1.889724 | 1.989823 | 2.049448 |
3 | colRanks(X[rows, cols]) | 1.915856 | 1.924066 | 2.091811 | 1.931529 | 2.086304 | 10.843138 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colRanks(X, rows, cols) | 1.009354 | 1.009670 | 1.007864 | 1.011458 | 1.010220 | 0.8977668 |
3 | colRanks(X[rows, cols]) | 1.033868 | 1.033546 | 1.092999 | 1.033834 | 1.059203 | 4.7498687 |
Table: Benchmarking of rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 1.786084 | 1.830661 | 1.845799 | 1.834907 | 1.873118 | 1.972461 |
2 | rowRanks(X, cols, rows) | 1.792278 | 1.842586 | 1.860069 | 1.846207 | 1.889986 | 2.008695 |
3 | rowRanks(X[cols, rows]) | 1.860194 | 1.907249 | 1.943382 | 1.916070 | 2.005546 | 2.294774 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanks(X, cols, rows) | 1.003468 | 1.006514 | 1.007731 | 1.006158 | 1.009005 | 1.018370 |
3 | rowRanks(X[cols, rows]) | 1.041493 | 1.041836 | 1.052868 | 1.044232 | 1.070699 | 1.163407 |
Figure: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on integer+1000x100 data as well as rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks_X_S() and rowRanks_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 1.786084 | 1.830661 | 1.845799 | 1.834907 | 1.873118 | 1.972461 |
1 | colRanks_X_S | 1.853096 | 1.861617 | 1.913827 | 1.868316 | 1.969691 | 2.282829 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colRanks_X_S | 1.037519 | 1.016909 | 1.036855 | 1.018207 | 1.051558 | 1.157351 |
Figure: Benchmarking of colRanks_X_S() and rowRanks_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3188643 170.3 5709258 305.0 5709258 305.0
Vcells 6176271 47.2 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks_X_S = colRanks(X_S, na.rm = FALSE), `colRanks(X, rows, cols)` = colRanks(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanks(X[rows, cols])` = colRanks(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3188625 170.3 5709258 305.0 5709258 305.0
Vcells 6176434 47.2 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks_X_S = rowRanks(X_S, na.rm = FALSE), `rowRanks(X, cols, rows)` = rowRanks(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanks(X[cols, rows])` = rowRanks(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 0.006295 | 0.0065565 | 0.0074843 | 0.006799 | 0.0069920 | 0.073618 |
2 | colRanks(X, rows, cols) | 0.006528 | 0.0069690 | 0.0072039 | 0.007145 | 0.0073405 | 0.011847 |
3 | colRanks(X[rows, cols]) | 0.007289 | 0.0077305 | 0.0079796 | 0.007899 | 0.0080720 | 0.013689 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colRanks(X, rows, cols) | 1.037014 | 1.062915 | 0.9625348 | 1.050890 | 1.049843 | 0.1609253 |
3 | colRanks(X[rows, cols]) | 1.157903 | 1.179059 | 1.0661787 | 1.161788 | 1.154462 | 0.1859464 |
Table: Benchmarking of rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 0.002713 | 0.0030020 | 0.0032059 | 0.0030990 | 0.0032590 | 0.005540 |
2 | rowRanks(X, cols, rows) | 0.002975 | 0.0031710 | 0.0037138 | 0.0032460 | 0.0034215 | 0.043964 |
3 | rowRanks(X[cols, rows]) | 0.003426 | 0.0037305 | 0.0039460 | 0.0038625 | 0.0040475 | 0.006218 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanks(X, cols, rows) | 1.096572 | 1.056296 | 1.158430 | 1.047435 | 1.049862 | 7.935740 |
3 | rowRanks(X[cols, rows]) | 1.262809 | 1.242672 | 1.230868 | 1.246370 | 1.241945 | 1.122383 |
Figure: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on double+10x10 data as well as rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks_X_S() and rowRanks_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 2.713 | 3.0020 | 3.20590 | 3.099 | 3.259 | 5.540 |
1 | colRanks_X_S | 6.295 | 6.5565 | 7.48428 | 6.799 | 6.992 | 73.618 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
1 | colRanks_X_S | 2.32031 | 2.184044 | 2.334533 | 2.193933 | 2.145443 | 13.28845 |
Figure: Benchmarking of colRanks_X_S() and rowRanks_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3188844 170.4 5709258 305.0 5709258 305.0
Vcells 6182220 47.2 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks_X_S = colRanks(X_S, na.rm = FALSE), `colRanks(X, rows, cols)` = colRanks(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanks(X[rows, cols])` = colRanks(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3188835 170.4 5709258 305.0 5709258 305.0
Vcells 6192298 47.3 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks_X_S = rowRanks(X_S, na.rm = FALSE), `rowRanks(X, cols, rows)` = rowRanks(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanks(X[cols, rows])` = rowRanks(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 0.148067 | 0.1497760 | 0.1505854 | 0.1503645 | 0.1510290 | 0.157633 |
2 | colRanks(X, rows, cols) | 0.150516 | 0.1518635 | 0.1530059 | 0.1523510 | 0.1532895 | 0.175781 |
3 | colRanks(X[rows, cols]) | 0.165477 | 0.1666115 | 0.1684137 | 0.1672240 | 0.1677795 | 0.242017 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanks(X, rows, cols) | 1.016540 | 1.013937 | 1.016074 | 1.013211 | 1.014967 | 1.115128 |
3 | colRanks(X[rows, cols]) | 1.117582 | 1.112405 | 1.118394 | 1.112124 | 1.110909 | 1.535319 |
Table: Benchmarking of rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks(X, cols, rows) | 0.141241 | 0.1425290 | 0.1433898 | 0.143155 | 0.1438515 | 0.149615 |
1 | rowRanks_X_S | 0.141344 | 0.1428305 | 0.1436151 | 0.143309 | 0.1438860 | 0.159763 |
3 | rowRanks(X[cols, rows]) | 0.149741 | 0.1513290 | 0.1529057 | 0.151880 | 0.1525175 | 0.218880 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks(X, cols, rows) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | rowRanks_X_S | 1.000729 | 1.002115 | 1.001571 | 1.001076 | 1.000240 | 1.067827 |
3 | rowRanks(X[cols, rows]) | 1.060181 | 1.061742 | 1.066364 | 1.060948 | 1.060243 | 1.462955 |
Figure: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on double+100x100 data as well as rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks_X_S() and rowRanks_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 141.344 | 142.8305 | 143.6151 | 143.3090 | 143.886 | 159.763 |
1 | colRanks_X_S | 148.067 | 149.7760 | 150.5854 | 150.3645 | 151.029 | 157.633 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colRanks_X_S | 1.047565 | 1.048628 | 1.048535 | 1.049233 | 1.049643 | 0.9866678 |
Figure: Benchmarking of colRanks_X_S() and rowRanks_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3189054 170.4 5709258 305.0 5709258 305.0
Vcells 6183638 47.2 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks_X_S = colRanks(X_S, na.rm = FALSE), `colRanks(X, rows, cols)` = colRanks(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanks(X[rows, cols])` = colRanks(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3189045 170.4 5709258 305.0 5709258 305.0
Vcells 6193716 47.3 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks_X_S = rowRanks(X_S, na.rm = FALSE), `rowRanks(X, cols, rows)` = rowRanks(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanks(X[cols, rows])` = rowRanks(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 0.207090 | 0.2092345 | 0.2107721 | 0.2100685 | 0.2111005 | 0.237037 |
2 | colRanks(X, rows, cols) | 0.209228 | 0.2105970 | 0.2123215 | 0.2113035 | 0.2121890 | 0.290789 |
3 | colRanks(X[rows, cols]) | 0.224139 | 0.2258135 | 0.2272842 | 0.2265125 | 0.2279600 | 0.240405 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanks(X, rows, cols) | 1.010324 | 1.006512 | 1.007351 | 1.005879 | 1.005156 | 1.226766 |
3 | colRanks(X[rows, cols]) | 1.082326 | 1.079236 | 1.078341 | 1.078279 | 1.079865 | 1.014209 |
Table: Benchmarking of rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks(X, cols, rows) | 0.201641 | 0.2032225 | 0.2043059 | 0.2038650 | 0.2047990 | 0.226545 |
1 | rowRanks_X_S | 0.202491 | 0.2040215 | 0.2054759 | 0.2046010 | 0.2052390 | 0.261856 |
3 | rowRanks(X[cols, rows]) | 0.212711 | 0.2141600 | 0.2153143 | 0.2148135 | 0.2155685 | 0.231875 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks(X, cols, rows) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | rowRanks_X_S | 1.004215 | 1.003932 | 1.005727 | 1.003610 | 1.002148 | 1.155868 |
3 | rowRanks(X[cols, rows]) | 1.054900 | 1.053820 | 1.053882 | 1.053705 | 1.052586 | 1.023527 |
Figure: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on double+1000x10 data as well as rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks_X_S() and rowRanks_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 202.491 | 204.0215 | 205.4759 | 204.6010 | 205.2390 | 261.856 |
1 | colRanks_X_S | 207.090 | 209.2345 | 210.7721 | 210.0685 | 211.1005 | 237.037 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colRanks_X_S | 1.022712 | 1.025551 | 1.025775 | 1.026723 | 1.028559 | 0.9052189 |
Figure: Benchmarking of colRanks_X_S() and rowRanks_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3189260 170.4 5709258 305.0 5709258 305.0
Vcells 6183775 47.2 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks_X_S = colRanks(X_S, na.rm = FALSE), `colRanks(X, rows, cols)` = colRanks(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanks(X[rows, cols])` = colRanks(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3189251 170.4 5709258 305.0 5709258 305.0
Vcells 6193853 47.3 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks_X_S = rowRanks(X_S, na.rm = FALSE), `rowRanks(X, cols, rows)` = rowRanks(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanks(X[cols, rows])` = rowRanks(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 0.082742 | 0.0842600 | 0.0857819 | 0.0855470 | 0.0868900 | 0.092634 |
2 | colRanks(X, rows, cols) | 0.085389 | 0.0873045 | 0.0888712 | 0.0878320 | 0.0884315 | 0.170394 |
3 | colRanks(X[rows, cols]) | 0.093323 | 0.0946875 | 0.0961895 | 0.0960605 | 0.0971350 | 0.105325 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanks(X, rows, cols) | 1.031991 | 1.036132 | 1.036014 | 1.026711 | 1.017741 | 1.839433 |
3 | colRanks(X[rows, cols]) | 1.127879 | 1.123754 | 1.121326 | 1.122897 | 1.117908 | 1.137001 |
Table: Benchmarking of rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 0.075401 | 0.0769525 | 0.0786147 | 0.0781230 | 0.0791155 | 0.121670 |
2 | rowRanks(X, cols, rows) | 0.075996 | 0.0786775 | 0.0793945 | 0.0794095 | 0.0799530 | 0.086530 |
3 | rowRanks(X[cols, rows]) | 0.084051 | 0.0855795 | 0.0866718 | 0.0865045 | 0.0872585 | 0.102024 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowRanks(X, cols, rows) | 1.007891 | 1.022416 | 1.009919 | 1.016468 | 1.010586 | 0.7111860 |
3 | rowRanks(X[cols, rows]) | 1.114720 | 1.112108 | 1.102488 | 1.107286 | 1.102926 | 0.8385305 |
Figure: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on double+10x1000 data as well as rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks_X_S() and rowRanks_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 75.401 | 76.9525 | 78.61471 | 78.123 | 79.1155 | 121.670 |
1 | colRanks_X_S | 82.742 | 84.2600 | 85.78187 | 85.547 | 86.8900 | 92.634 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks_X_S | 1.00000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 |
1 | colRanks_X_S | 1.09736 | 1.094961 | 1.091168 | 1.09503 | 1.098268 | 0.7613545 |
Figure: Benchmarking of colRanks_X_S() and rowRanks_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3189459 170.4 5709258 305.0 5709258 305.0
Vcells 6229227 47.6 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks_X_S = colRanks(X_S, na.rm = FALSE), `colRanks(X, rows, cols)` = colRanks(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanks(X[rows, cols])` = colRanks(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3189450 170.4 5709258 305.0 5709258 305.0
Vcells 6329305 48.3 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks_X_S = rowRanks(X_S, na.rm = FALSE), `rowRanks(X, cols, rows)` = rowRanks(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanks(X[cols, rows])` = rowRanks(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.477775 | 1.486052 | 1.543858 | 1.495405 | 1.600798 | 1.818087 |
2 | colRanks(X, rows, cols) | 1.497266 | 1.504472 | 1.552929 | 1.509940 | 1.620300 | 1.794940 |
3 | colRanks(X[rows, cols]) | 1.631080 | 1.640476 | 1.786297 | 1.651414 | 1.855884 | 7.422274 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colRanks(X, rows, cols) | 1.013189 | 1.012395 | 1.005876 | 1.009720 | 1.012182 | 0.9872685 |
3 | colRanks(X[rows, cols]) | 1.103740 | 1.103916 | 1.157035 | 1.104325 | 1.159349 | 4.0824636 |
Table: Benchmarking of rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks(X, cols, rows) | 1.474042 | 1.481378 | 1.506420 | 1.489056 | 1.531859 | 1.604075 |
1 | rowRanks_X_S | 1.464498 | 1.471701 | 1.502593 | 1.516644 | 1.526038 | 1.575866 |
3 | rowRanks(X[cols, rows]) | 1.559180 | 1.576128 | 1.639721 | 1.588039 | 1.708402 | 1.898545 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks(X, cols, rows) | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 | 1.0000000 |
1 | rowRanks_X_S | 0.9935253 | 0.9934676 | 0.997460 | 1.018527 | 0.9961997 | 0.9824142 |
3 | rowRanks(X[cols, rows]) | 1.0577582 | 1.0639607 | 1.088489 | 1.066474 | 1.1152472 | 1.1835762 |
Figure: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on double+100x1000 data as well as rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks_X_S() and rowRanks_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.477775 | 1.486052 | 1.543858 | 1.495405 | 1.600798 | 1.818087 |
2 | rowRanks_X_S | 1.464498 | 1.471701 | 1.502593 | 1.516644 | 1.526038 | 1.575866 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.0000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 |
2 | rowRanks_X_S | 0.9910155 | 0.9903429 | 0.9732721 | 1.014202 | 0.9532983 | 0.8667715 |
Figure: Benchmarking of colRanks_X_S() and rowRanks_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3189675 170.4 5709258 305.0 5709258 305.0
Vcells 6229374 47.6 22343563 170.5 56666022 432.4
> colStats <- microbenchmark(colRanks_X_S = colRanks(X_S, na.rm = FALSE), `colRanks(X, rows, cols)` = colRanks(X,
+ rows = rows, cols = cols, na.rm = FALSE), `colRanks(X[rows, cols])` = colRanks(X[rows, cols],
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3189666 170.4 5709258 305.0 5709258 305.0
Vcells 6329452 48.3 22343563 170.5 56666022 432.4
> rowStats <- microbenchmark(rowRanks_X_S = rowRanks(X_S, na.rm = FALSE), `rowRanks(X, cols, rows)` = rowRanks(X,
+ rows = cols, cols = rows, na.rm = FALSE), `rowRanks(X[cols, rows])` = rowRanks(X[cols, rows],
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 2.013273 | 2.073523 | 2.094985 | 2.078577 | 2.092253 | 2.226805 |
2 | colRanks(X, rows, cols) | 2.022983 | 2.080008 | 2.121242 | 2.085494 | 2.167508 | 2.623835 |
3 | colRanks(X[rows, cols]) | 2.086775 | 2.142638 | 2.246980 | 2.147093 | 2.157801 | 8.187684 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colRanks(X, rows, cols) | 1.004823 | 1.003127 | 1.012533 | 1.003328 | 1.035969 | 1.178296 |
3 | colRanks(X[rows, cols]) | 1.036509 | 1.033332 | 1.072552 | 1.032963 | 1.031329 | 3.676875 |
Table: Benchmarking of rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks(X, cols, rows) | 2.023542 | 2.079500 | 2.104647 | 2.095444 | 2.126408 | 2.257241 |
1 | rowRanks_X_S | 2.030250 | 2.085611 | 2.113265 | 2.100188 | 2.133288 | 2.416232 |
3 | rowRanks(X[cols, rows]) | 2.123181 | 2.177160 | 2.234303 | 2.183795 | 2.315200 | 2.404712 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowRanks(X, cols, rows) | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | rowRanks_X_S | 1.003315 | 1.002938 | 1.004095 | 1.002264 | 1.003235 | 1.070436 |
3 | rowRanks(X[cols, rows]) | 1.049240 | 1.046963 | 1.061605 | 1.042164 | 1.088785 | 1.065332 |
Figure: Benchmarking of colRanks_X_S(), colRanks(X, rows, cols)() and colRanks(X[rows, cols])() on double+1000x100 data as well as rowRanks_X_S(), rowRanks(X, cols, rows)() and rowRanks(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colRanks_X_S() and rowRanks_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 2.013273 | 2.073523 | 2.094985 | 2.078577 | 2.092253 | 2.226805 |
2 | rowRanks_X_S | 2.030250 | 2.085611 | 2.113265 | 2.100188 | 2.133288 | 2.416232 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colRanks_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowRanks_X_S | 1.008433 | 1.005829 | 1.008725 | 1.010398 | 1.019613 | 1.085067 |
Figure: Benchmarking of colRanks_X_S() and rowRanks_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 27.3 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowRanks_subset')
Copyright Dongcan Jiang. Last updated on 2019-09-10 20:51:58 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>