-
Notifications
You must be signed in to change notification settings - Fork 34
colRowCumprods
matrixStats: Benchmark report
This report benchmark the performance of colCumprods() and rowCumprods() against alternative methods.
- apply() + cumprod()
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode, range = c(-1, 1))
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3102269 165.7 5709258 305.0 5709258 305.0
Vcells 5802882 44.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumprods = colCumprods(X), `apply+cumprod` = apply(X, MARGIN = 2L,
+ FUN = cumprod), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101198 165.7 5709258 305.0 5709258 305.0
Vcells 5799920 44.3 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumprods = rowCumprods(X), `apply+cumprod` = apply(X, MARGIN = 1L,
+ FUN = cumprod), unit = "ms")
Table: Benchmarking of colCumprods() and apply+cumprod() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 0.001008 | 0.0013145 | 0.0017749 | 0.001658 | 0.0019545 | 0.011696 |
2 | apply+cumprod | 0.024891 | 0.0259205 | 0.0274608 | 0.026259 | 0.0266260 | 0.129661 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.00000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+cumprod | 24.69345 | 19.7189 | 15.47208 | 15.83776 | 13.62292 | 11.08593 |
Table: Benchmarking of rowCumprods() and apply+cumprod() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 0.001054 | 0.0014595 | 0.0019190 | 0.0018890 | 0.0020975 | 0.010228 |
2 | apply+cumprod | 0.025337 | 0.0258825 | 0.0272502 | 0.0262315 | 0.0266955 | 0.100219 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.000000 |
2 | apply+cumprod | 24.0389 | 17.73381 | 14.20057 | 13.88645 | 12.72729 | 9.798494 |
Figure: Benchmarking of colCumprods() and apply+cumprod() on integer+10x10 data as well as rowCumprods() and apply+cumprod() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCumprods() and rowCumprods() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.008 | 1.3145 | 1.77486 | 1.658 | 1.9545 | 11.696 |
2 | rowCumprods | 1.054 | 1.4595 | 1.91895 | 1.889 | 2.0975 | 10.228 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCumprods | 1.045635 | 1.110308 | 1.081184 | 1.139325 | 1.073165 | 0.874487 |
Figure: Benchmarking of colCumprods() and rowCumprods() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3099753 165.6 5709258 305.0 5709258 305.0
Vcells 5416321 41.4 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumprods = colCumprods(X), `apply+cumprod` = apply(X, MARGIN = 2L,
+ FUN = cumprod), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3099747 165.6 5709258 305.0 5709258 305.0
Vcells 5421364 41.4 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumprods = rowCumprods(X), `apply+cumprod` = apply(X, MARGIN = 1L,
+ FUN = cumprod), unit = "ms")
Table: Benchmarking of colCumprods() and apply+cumprod() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 0.017370 | 0.0176450 | 0.0184143 | 0.0181195 | 0.0184245 | 0.044507 |
2 | apply+cumprod | 0.177153 | 0.1820505 | 0.1897528 | 0.1837460 | 0.1898095 | 0.356529 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.00000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.000000 |
2 | apply+cumprod | 10.19879 | 10.3174 | 10.30462 | 10.14079 | 10.30202 | 8.010628 |
Table: Benchmarking of rowCumprods() and apply+cumprod() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 0.018164 | 0.0184690 | 0.0191332 | 0.0188675 | 0.0193355 | 0.027174 |
2 | apply+cumprod | 0.176977 | 0.1817655 | 0.1896042 | 0.1841500 | 0.1896660 | 0.341702 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.00000 |
2 | apply+cumprod | 9.743283 | 9.841654 | 9.909675 | 9.76017 | 9.809211 | 12.57459 |
Figure: Benchmarking of colCumprods() and apply+cumprod() on integer+100x100 data as well as rowCumprods() and apply+cumprod() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCumprods() and rowCumprods() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 17.370 | 17.645 | 18.41434 | 18.1195 | 18.4245 | 44.507 |
2 | rowCumprods | 18.164 | 18.469 | 19.13324 | 18.8675 | 19.3355 | 27.174 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowCumprods | 1.045711 | 1.046699 | 1.03904 | 1.041281 | 1.049445 | 0.6105556 |
Figure: Benchmarking of colCumprods() and rowCumprods() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3100486 165.6 5709258 305.0 5709258 305.0
Vcells 5419843 41.4 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumprods = colCumprods(X), `apply+cumprod` = apply(X, MARGIN = 2L,
+ FUN = cumprod), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3100477 165.6 5709258 305.0 5709258 305.0
Vcells 5424881 41.4 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumprods = rowCumprods(X), `apply+cumprod` = apply(X, MARGIN = 1L,
+ FUN = cumprod), unit = "ms")
Table: Benchmarking of colCumprods() and apply+cumprod() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 0.016827 | 0.0170745 | 0.0177498 | 0.0174820 | 0.0177875 | 0.035532 |
2 | apply+cumprod | 0.112237 | 0.1138930 | 0.1190128 | 0.1157075 | 0.1177295 | 0.204261 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+cumprod | 6.670054 | 6.670356 | 6.705038 | 6.618665 | 6.618665 | 5.748649 |
Table: Benchmarking of rowCumprods() and apply+cumprod() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 0.019699 | 0.0199165 | 0.0205075 | 0.0203345 | 0.0206065 | 0.039095 |
2 | apply+cumprod | 0.111742 | 0.1136960 | 0.1184890 | 0.1154635 | 0.1178070 | 0.201616 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+cumprod | 5.672471 | 5.708634 | 5.777843 | 5.678207 | 5.716983 | 5.157079 |
Figure: Benchmarking of colCumprods() and apply+cumprod() on integer+1000x10 data as well as rowCumprods() and apply+cumprod() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCumprods() and rowCumprods() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 16.827 | 17.0745 | 17.74976 | 17.4820 | 17.7875 | 35.532 |
2 | rowCumprods | 19.699 | 19.9165 | 20.50749 | 20.3345 | 20.6065 | 39.095 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCumprods | 1.170678 | 1.166447 | 1.155367 | 1.163168 | 1.158482 | 1.100276 |
Figure: Benchmarking of colCumprods() and rowCumprods() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3100672 165.6 5709258 305.0 5709258 305.0
Vcells 5420527 41.4 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumprods = colCumprods(X), `apply+cumprod` = apply(X, MARGIN = 2L,
+ FUN = cumprod), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3100666 165.6 5709258 305.0 5709258 305.0
Vcells 5425570 41.4 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumprods = rowCumprods(X), `apply+cumprod` = apply(X, MARGIN = 1L,
+ FUN = cumprod), unit = "ms")
Table: Benchmarking of colCumprods() and apply+cumprod() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 0.017995 | 0.0186465 | 0.0194841 | 0.0191480 | 0.019801 | 0.028707 |
2 | apply+cumprod | 0.784365 | 0.8574795 | 0.8773045 | 0.8729105 | 0.890153 | 1.427491 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+cumprod | 43.58794 | 45.98608 | 45.02662 | 45.58755 | 44.95495 | 49.72623 |
Table: Benchmarking of rowCumprods() and apply+cumprod() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 0.017135 | 0.0181120 | 0.0190364 | 0.018872 | 0.0195365 | 0.029151 |
2 | apply+cumprod | 0.785872 | 0.8607405 | 0.8737364 | 0.873674 | 0.8883155 | 0.972038 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+cumprod | 45.86355 | 47.52322 | 45.89817 | 46.29472 | 45.46953 | 33.34493 |
Figure: Benchmarking of colCumprods() and apply+cumprod() on integer+10x1000 data as well as rowCumprods() and apply+cumprod() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCumprods() and rowCumprods() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCumprods | 17.135 | 18.1120 | 19.03641 | 18.872 | 19.5365 | 29.151 |
1 | colCumprods | 17.995 | 18.6465 | 19.48413 | 19.148 | 19.8010 | 28.707 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCumprods | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colCumprods | 1.05019 | 1.029511 | 1.023519 | 1.014625 | 1.013539 | 0.984769 |
Figure: Benchmarking of colCumprods() and rowCumprods() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3100856 165.7 5709258 305.0 5709258 305.0
Vcells 5421011 41.4 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumprods = colCumprods(X), `apply+cumprod` = apply(X, MARGIN = 2L,
+ FUN = cumprod), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3100847 165.7 5709258 305.0 5709258 305.0
Vcells 5471049 41.8 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumprods = rowCumprods(X), `apply+cumprod` = apply(X, MARGIN = 1L,
+ FUN = cumprod), unit = "ms")
Table: Benchmarking of colCumprods() and apply+cumprod() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 0.162444 | 0.1713425 | 0.2003627 | 0.194988 | 0.218098 | 0.320884 |
2 | apply+cumprod | 1.648345 | 1.7511105 | 4.6575790 | 1.935061 | 2.197555 | 241.029480 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.00000 | 1.00000 | 1.00000 | 1.000000 | 1.000 | 1.0000 |
2 | apply+cumprod | 10.14716 | 10.21994 | 23.24574 | 9.924003 | 10.076 | 751.1421 |
Table: Benchmarking of rowCumprods() and apply+cumprod() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 0.163129 | 0.173584 | 0.3100334 | 0.1934145 | 0.2083955 | 11.77195 |
2 | apply+cumprod | 1.628733 | 1.711248 | 2.2024568 | 1.9245295 | 2.1232570 | 15.87423 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | apply+cumprod | 9.984325 | 9.858328 | 7.103934 | 9.950285 | 10.18859 | 1.348479 |
Figure: Benchmarking of colCumprods() and apply+cumprod() on integer+100x1000 data as well as rowCumprods() and apply+cumprod() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCumprods() and rowCumprods() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCumprods | 163.129 | 173.5840 | 310.0334 | 193.4145 | 208.3955 | 11771.954 |
1 | colCumprods | 162.444 | 171.3425 | 200.3627 | 194.9880 | 218.0980 | 320.884 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCumprods | 1.0000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colCumprods | 0.9958009 | 0.9870869 | 0.6462616 | 1.008135 | 1.046558 | 0.0272583 |
Figure: Benchmarking of colCumprods() and rowCumprods() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101049 165.7 5709258 305.0 5709258 305.0
Vcells 5421573 41.4 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumprods = colCumprods(X), `apply+cumprod` = apply(X, MARGIN = 2L,
+ FUN = cumprod), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101043 165.7 5709258 305.0 5709258 305.0
Vcells 5471616 41.8 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumprods = rowCumprods(X), `apply+cumprod` = apply(X, MARGIN = 1L,
+ FUN = cumprod), unit = "ms")
Table: Benchmarking of colCumprods() and apply+cumprod() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 0.157326 | 0.170762 | 0.1872476 | 0.187252 | 0.199506 | 0.302430 |
2 | apply+cumprod | 0.919765 | 1.022550 | 1.2739666 | 1.115730 | 1.196760 | 6.949729 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | apply+cumprod | 5.846236 | 5.988162 | 6.803648 | 5.958438 | 5.998617 | 22.97963 |
Table: Benchmarking of rowCumprods() and apply+cumprod() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 0.170043 | 0.1795145 | 0.2612241 | 0.2088915 | 0.2209475 | 5.549376 |
2 | apply+cumprod | 0.963364 | 1.0610100 | 1.2855723 | 1.1820010 | 1.2416525 | 6.517151 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+cumprod | 5.665414 | 5.910442 | 4.921338 | 5.658445 | 5.619672 | 1.174394 |
Figure: Benchmarking of colCumprods() and apply+cumprod() on integer+1000x100 data as well as rowCumprods() and apply+cumprod() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCumprods() and rowCumprods() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 157.326 | 170.7620 | 187.2476 | 187.2520 | 199.5060 | 302.430 |
2 | rowCumprods | 170.043 | 179.5145 | 261.2241 | 208.8915 | 220.9475 | 5549.376 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | rowCumprods | 1.080832 | 1.051255 | 1.395074 | 1.115563 | 1.107473 | 18.34929 |
Figure: Benchmarking of colCumprods() and rowCumprods() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode, range = c(-1, 1))
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101257 165.7 5709258 305.0 5709258 305.0
Vcells 5537961 42.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumprods = colCumprods(X), `apply+cumprod` = apply(X, MARGIN = 2L,
+ FUN = cumprod), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101242 165.7 5709258 305.0 5709258 305.0
Vcells 5538089 42.3 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumprods = rowCumprods(X), `apply+cumprod` = apply(X, MARGIN = 1L,
+ FUN = cumprod), unit = "ms")
Table: Benchmarking of colCumprods() and apply+cumprod() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 0.000957 | 0.0012555 | 0.0016875 | 0.001573 | 0.001911 | 0.010514 |
2 | apply+cumprod | 0.025373 | 0.0259485 | 0.0274649 | 0.026166 | 0.026514 | 0.130695 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+cumprod | 26.51306 | 20.66786 | 16.27551 | 16.63446 | 13.87441 | 12.43057 |
Table: Benchmarking of rowCumprods() and apply+cumprod() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 0.000964 | 0.0014235 | 0.0018137 | 0.0017945 | 0.0019705 | 0.010656 |
2 | apply+cumprod | 0.024430 | 0.0254435 | 0.0265325 | 0.0257410 | 0.0260540 | 0.094668 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 1.00000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.000000 |
2 | apply+cumprod | 25.34232 | 17.8739 | 14.62863 | 14.34439 | 13.22202 | 8.884009 |
Figure: Benchmarking of colCumprods() and apply+cumprod() on double+10x10 data as well as rowCumprods() and apply+cumprod() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCumprods() and rowCumprods() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 957 | 1255.5 | 1687.50 | 1573.0 | 1911.0 | 10514 |
2 | rowCumprods | 964 | 1423.5 | 1813.74 | 1794.5 | 1970.5 | 10656 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCumprods | 1.007314 | 1.133811 | 1.074809 | 1.140814 | 1.031135 | 1.013506 |
Figure: Benchmarking of colCumprods() and rowCumprods() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101435 165.7 5709258 305.0 5709258 305.0
Vcells 5538071 42.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumprods = colCumprods(X), `apply+cumprod` = apply(X, MARGIN = 2L,
+ FUN = cumprod), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101429 165.7 5709258 305.0 5709258 305.0
Vcells 5548114 42.4 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumprods = rowCumprods(X), `apply+cumprod` = apply(X, MARGIN = 1L,
+ FUN = cumprod), unit = "ms")
Table: Benchmarking of colCumprods() and apply+cumprod() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 0.010369 | 0.0109535 | 0.0119505 | 0.0113065 | 0.0120065 | 0.049808 |
2 | apply+cumprod | 0.205167 | 0.2096305 | 0.2170450 | 0.2110580 | 0.2175210 | 0.361471 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.000000 |
2 | apply+cumprod | 19.78658 | 19.13822 | 18.16204 | 18.66696 | 18.11694 | 7.257288 |
Table: Benchmarking of rowCumprods() and apply+cumprod() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 0.008117 | 0.0087290 | 0.0095054 | 0.0092025 | 0.0097095 | 0.020993 |
2 | apply+cumprod | 0.166112 | 0.1690535 | 0.1754378 | 0.1699895 | 0.1719100 | 0.349950 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 1.0000 | 1.00000 | 1.00000 | 1.0000 | 1.00000 | 1.00000 |
2 | apply+cumprod | 20.4647 | 19.36688 | 18.45655 | 18.4721 | 17.70534 | 16.66984 |
Figure: Benchmarking of colCumprods() and apply+cumprod() on double+100x100 data as well as rowCumprods() and apply+cumprod() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCumprods() and rowCumprods() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCumprods | 8.117 | 8.7290 | 9.50545 | 9.2025 | 9.7095 | 20.993 |
1 | colCumprods | 10.369 | 10.9535 | 11.95048 | 11.3065 | 12.0065 | 49.808 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCumprods | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.0000 |
1 | colCumprods | 1.277442 | 1.25484 | 1.257224 | 1.228633 | 1.236572 | 2.3726 |
Figure: Benchmarking of colCumprods() and rowCumprods() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101625 165.7 5709258 305.0 5709258 305.0
Vcells 5538955 42.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumprods = colCumprods(X), `apply+cumprod` = apply(X, MARGIN = 2L,
+ FUN = cumprod), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101619 165.7 5709258 305.0 5709258 305.0
Vcells 5548998 42.4 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumprods = rowCumprods(X), `apply+cumprod` = apply(X, MARGIN = 1L,
+ FUN = cumprod), unit = "ms")
Table: Benchmarking of colCumprods() and apply+cumprod() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 0.024543 | 0.0249125 | 0.0256396 | 0.0252260 | 0.0256205 | 0.046757 |
2 | apply+cumprod | 0.413699 | 0.4159710 | 0.4210708 | 0.4190815 | 0.4219310 | 0.497122 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+cumprod | 16.85609 | 16.69728 | 16.42265 | 16.61308 | 16.46849 | 10.63203 |
Table: Benchmarking of rowCumprods() and apply+cumprod() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 0.023255 | 0.025001 | 0.0298212 | 0.0259615 | 0.026972 | 0.099084 |
2 | apply+cumprod | 0.366003 | 0.369050 | 0.3836890 | 0.3778690 | 0.381283 | 0.595822 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 1.00000 | 1.00000 | 1.0000 | 1.00000 | 1.00000 | 1.000000 |
2 | apply+cumprod | 15.73868 | 14.76141 | 12.8663 | 14.55498 | 14.13625 | 6.013302 |
Figure: Benchmarking of colCumprods() and apply+cumprod() on double+1000x10 data as well as rowCumprods() and apply+cumprod() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCumprods() and rowCumprods() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 24.543 | 24.9125 | 25.63963 | 25.2260 | 25.6205 | 46.757 |
2 | rowCumprods | 23.255 | 25.0010 | 29.82124 | 25.9615 | 26.9720 | 99.084 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowCumprods | 0.9475207 | 1.003552 | 1.163092 | 1.029156 | 1.052751 | 2.119127 |
Figure: Benchmarking of colCumprods() and rowCumprods() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101814 165.7 5709258 305.0 5709258 305.0
Vcells 5539997 42.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumprods = colCumprods(X), `apply+cumprod` = apply(X, MARGIN = 2L,
+ FUN = cumprod), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101808 165.7 5709258 305.0 5709258 305.0
Vcells 5550040 42.4 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumprods = rowCumprods(X), `apply+cumprod` = apply(X, MARGIN = 1L,
+ FUN = cumprod), unit = "ms")
Table: Benchmarking of colCumprods() and apply+cumprod() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 0.010095 | 0.0113285 | 0.0120755 | 0.0117065 | 0.0125125 | 0.022029 |
2 | apply+cumprod | 0.740065 | 0.8032355 | 0.8206785 | 0.8191090 | 0.8358040 | 0.888269 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+cumprod | 73.31005 | 70.90396 | 67.96251 | 69.97044 | 66.79752 | 40.32271 |
Table: Benchmarking of rowCumprods() and apply+cumprod() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 0.009671 | 0.0109705 | 0.0119001 | 0.0115055 | 0.0121585 | 0.021250 |
2 | apply+cumprod | 0.744983 | 0.8057400 | 0.8225679 | 0.8211795 | 0.8416245 | 0.895346 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+cumprod | 77.03267 | 73.44606 | 69.12283 | 71.37278 | 69.22108 | 42.13393 |
Figure: Benchmarking of colCumprods() and apply+cumprod() on double+10x1000 data as well as rowCumprods() and apply+cumprod() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCumprods() and rowCumprods() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCumprods | 9.671 | 10.9705 | 11.90009 | 11.5055 | 12.1585 | 21.250 |
1 | colCumprods | 10.095 | 11.3285 | 12.07546 | 11.7065 | 12.5125 | 22.029 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCumprods | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
1 | colCumprods | 1.043842 | 1.032633 | 1.014737 | 1.01747 | 1.029115 | 1.036659 |
Figure: Benchmarking of colCumprods() and rowCumprods() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101998 165.7 5709258 305.0 5709258 305.0
Vcells 5540120 42.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumprods = colCumprods(X), `apply+cumprod` = apply(X, MARGIN = 2L,
+ FUN = cumprod), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101989 165.7 5709258 305.0 5709258 305.0
Vcells 5640158 43.1 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumprods = rowCumprods(X), `apply+cumprod` = apply(X, MARGIN = 1L,
+ FUN = cumprod), unit = "ms")
Table: Benchmarking of colCumprods() and apply+cumprod() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 0.092531 | 0.1023675 | 0.112034 | 0.1085595 | 0.1218925 | 0.162247 |
2 | apply+cumprod | 1.882893 | 1.9782800 | 2.460674 | 2.1001155 | 2.3842770 | 12.407964 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+cumprod | 20.34878 | 19.32527 | 21.96363 | 19.34529 | 19.56049 | 76.47577 |
Table: Benchmarking of rowCumprods() and apply+cumprod() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 0.069477 | 0.0782755 | 0.2282816 | 0.086561 | 0.0963115 | 13.99169 |
2 | apply+cumprod | 1.513860 | 1.6559535 | 2.1092773 | 1.872459 | 2.0174680 | 12.80392 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 1.00000 | 1.00000 | 1.000000 | 1.00000 | 1.00000 | 1.0000000 |
2 | apply+cumprod | 21.78937 | 21.15545 | 9.239803 | 21.63166 | 20.94732 | 0.9151094 |
Figure: Benchmarking of colCumprods() and apply+cumprod() on double+100x1000 data as well as rowCumprods() and apply+cumprod() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCumprods() and rowCumprods() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCumprods | 69.477 | 78.2755 | 228.2816 | 86.5610 | 96.3115 | 13991.686 |
1 | colCumprods | 92.531 | 102.3675 | 112.0340 | 108.5595 | 121.8925 | 162.247 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCumprods | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colCumprods | 1.331822 | 1.307785 | 0.4907711 | 1.254139 | 1.265607 | 0.011596 |
Figure: Benchmarking of colCumprods() and rowCumprods() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3102194 165.7 5709258 305.0 5709258 305.0
Vcells 5541346 42.3 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colCumprods = colCumprods(X), `apply+cumprod` = apply(X, MARGIN = 2L,
+ FUN = cumprod), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3102185 165.7 5709258 305.0 5709258 305.0
Vcells 5641384 43.1 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowCumprods = rowCumprods(X), `apply+cumprod` = apply(X, MARGIN = 1L,
+ FUN = cumprod), unit = "ms")
Table: Benchmarking of colCumprods() and apply+cumprod() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 0.238808 | 0.240286 | 0.2469832 | 0.2428435 | 0.2465275 | 0.294250 |
2 | apply+cumprod | 3.475465 | 3.491878 | 3.7121315 | 3.4980985 | 3.5098470 | 9.665839 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colCumprods | 1.00000 | 1.00000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+cumprod | 14.55339 | 14.53217 | 15.0299 | 14.40474 | 14.23714 | 32.84907 |
Table: Benchmarking of rowCumprods() and apply+cumprod() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 0.210230 | 0.213321 | 0.2222368 | 0.216858 | 0.2238835 | 0.271953 |
2 | apply+cumprod | 3.509805 | 3.525008 | 3.7583221 | 3.534352 | 3.6329115 | 8.797999 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowCumprods | 1.00000 | 1.00000 | 1.00000 | 1.000 | 1.00000 | 1.00000 |
2 | apply+cumprod | 16.69507 | 16.52443 | 16.91134 | 16.298 | 16.22679 | 32.35117 |
Figure: Benchmarking of colCumprods() and apply+cumprod() on double+1000x100 data as well as rowCumprods() and apply+cumprod() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colCumprods() and rowCumprods() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCumprods | 210.230 | 213.321 | 222.2368 | 216.8580 | 223.8835 | 271.953 |
1 | colCumprods | 238.808 | 240.286 | 246.9832 | 242.8435 | 246.5275 | 294.250 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowCumprods | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colCumprods | 1.135937 | 1.126406 | 1.111351 | 1.119827 | 1.101142 | 1.081988 |
Figure: Benchmarking of colCumprods() and rowCumprods() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 24.8 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colCumprods')
Copyright Henrik Bengtsson. Last updated on 2019-09-10 20:39:04 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>