-
Notifications
You must be signed in to change notification settings - Fork 34
colRowVars
matrixStats: Benchmark report
This report benchmark the performance of colVars() and rowVars() against alternative methods.
- apply() + var()
- colVarColMeans() and rowVarColMeans()
- genefilter::rowVars(t(.)) and genefilter::rowVars()
where
> colVarColMeans <- function(x, na.rm = TRUE) {
+ if (na.rm) {
+ n <- colSums(!is.na(x))
+ } else {
+ n <- nrow(x)
+ }
+ var <- colMeans(x * x, na.rm = na.rm) - (colMeans(x, na.rm = na.rm))^2
+ var * n/(n - 1)
+ }
and
> rowVarRowMeans <- function(x, na.rm = TRUE) {
+ if (na.rm) {
+ n <- rowSums(!is.na(x))
+ } else {
+ n <- ncol(x)
+ }
+ mu <- rowMeans(x, na.rm = na.rm)
+ var <- rowMeans(x * x, na.rm = na.rm) - mu^2
+ var * (n/(n - 1))
+ }
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3217965 171.9 5709258 305.0 5709258 305.0
Vcells 6641007 50.7 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars = colVars(X, na.rm = FALSE), colVarColMeans = colVarColMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE), `genefilter::rowVars(t(.))` = genefilter_colVars(X,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3215471 171.8 5709258 305.0 5709258 305.0
Vcells 6633758 50.7 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars = rowVars(X, na.rm = FALSE), rowVarRowMeans = rowVarRowMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE), `genefilter::rowVars` = genefilter_rowVars(X,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 0.001460 | 0.0020040 | 0.0025969 | 0.0026205 | 0.0028940 | 0.010744 |
2 | colVarColMeans | 0.008972 | 0.0099950 | 0.0115287 | 0.0115365 | 0.0124145 | 0.028553 |
4 | genefilter::rowVars(t(.)) | 0.035187 | 0.0366470 | 0.0456826 | 0.0390445 | 0.0407525 | 0.708376 |
3 | apply+var | 0.074956 | 0.0776335 | 0.0795909 | 0.0790310 | 0.0803820 | 0.121227 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colVarColMeans | 6.145206 | 4.987525 | 4.439352 | 4.402404 | 4.289737 | 2.657576 |
4 | genefilter::rowVars(t(.)) | 24.100685 | 18.286926 | 17.590926 | 14.899638 | 14.081721 | 65.932241 |
3 | apply+var | 51.339726 | 38.739272 | 30.647943 | 30.158748 | 27.775397 | 11.283228 |
Table: Benchmarking of rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 0.001435 | 0.0018395 | 0.0024751 | 0.0024095 | 0.0027640 | 0.011424 |
2 | rowVarRowMeans | 0.010436 | 0.0112590 | 0.0130313 | 0.0121740 | 0.0129220 | 0.043333 |
4 | genefilter::rowVars | 0.029881 | 0.0313825 | 0.0342078 | 0.0336050 | 0.0354945 | 0.077415 |
3 | apply+var | 0.074680 | 0.0765430 | 0.0804742 | 0.0781900 | 0.0795675 | 0.179592 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | rowVarRowMeans | 7.272474 | 6.120685 | 5.265056 | 5.05250 | 4.675109 | 3.793155 |
4 | genefilter::rowVars | 20.822996 | 17.060343 | 13.821006 | 13.94688 | 12.841715 | 6.776523 |
3 | apply+var | 52.041812 | 41.610764 | 32.514036 | 32.45072 | 28.787084 | 15.720588 |
Figure: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on integer+10x10 data as well as rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colVars() and rowVars() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowVars | 1.435 | 1.8395 | 2.47506 | 2.4095 | 2.764 | 11.424 |
1 | colVars | 1.460 | 2.0040 | 2.59694 | 2.6205 | 2.894 | 10.744 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 |
1 | colVars | 1.017422 | 1.089427 | 1.049243 | 1.08757 | 1.047033 | 0.9404762 |
Figure: Benchmarking of colVars() and rowVars() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3214048 171.7 5709258 305.0 5709258 305.0
Vcells 6250325 47.7 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars = colVars(X, na.rm = FALSE), colVarColMeans = colVarColMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE), `genefilter::rowVars(t(.))` = genefilter_colVars(X,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3214039 171.7 5709258 305.0 5709258 305.0
Vcells 6255363 47.8 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars = rowVars(X, na.rm = FALSE), rowVarRowMeans = rowVarRowMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE), `genefilter::rowVars` = genefilter_rowVars(X,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 0.028924 | 0.0308180 | 0.0320355 | 0.0318570 | 0.0330285 | 0.040462 |
2 | colVarColMeans | 0.047736 | 0.0519650 | 0.0552907 | 0.0539490 | 0.0563815 | 0.120782 |
4 | genefilter::rowVars(t(.)) | 0.176005 | 0.1842785 | 0.1918426 | 0.1882460 | 0.1949230 | 0.274957 |
3 | apply+var | 0.732728 | 0.7632955 | 0.7924034 | 0.7863065 | 0.8000800 | 1.460130 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colVarColMeans | 1.650394 | 1.686190 | 1.725920 | 1.693474 | 1.707056 | 2.985072 |
4 | genefilter::rowVars(t(.)) | 6.085085 | 5.979574 | 5.988442 | 5.909094 | 5.901661 | 6.795438 |
3 | apply+var | 25.332872 | 24.767847 | 24.735182 | 24.682378 | 24.223928 | 36.086452 |
Table: Benchmarking of rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 0.029560 | 0.0316060 | 0.0323945 | 0.0323015 | 0.033135 | 0.040801 |
2 | rowVarRowMeans | 0.107017 | 0.1105695 | 0.1146396 | 0.1143530 | 0.116681 | 0.166548 |
4 | genefilter::rowVars | 0.158899 | 0.1668470 | 0.1717770 | 0.1716305 | 0.175746 | 0.220166 |
3 | apply+var | 0.725154 | 0.7627570 | 0.7811029 | 0.7811415 | 0.798055 | 0.855579 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVarRowMeans | 3.620331 | 3.498371 | 3.538864 | 3.540176 | 3.521382 | 4.081959 |
4 | genefilter::rowVars | 5.375474 | 5.278966 | 5.302663 | 5.313391 | 5.303938 | 5.396093 |
3 | apply+var | 24.531597 | 24.133298 | 24.112230 | 24.182824 | 24.084955 | 20.969560 |
Figure: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on integer+100x100 data as well as rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colVars() and rowVars() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 28.924 | 30.818 | 32.03548 | 31.8570 | 33.0285 | 40.462 |
2 | rowVars | 29.560 | 31.606 | 32.39447 | 32.3015 | 33.1350 | 40.801 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVars | 1.021989 | 1.02557 | 1.011206 | 1.013953 | 1.003224 | 1.008378 |
Figure: Benchmarking of colVars() and rowVars() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3214816 171.7 5709258 305.0 5709258 305.0
Vcells 6254405 47.8 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars = colVars(X, na.rm = FALSE), colVarColMeans = colVarColMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE), `genefilter::rowVars(t(.))` = genefilter_colVars(X,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3214810 171.7 5709258 305.0 5709258 305.0
Vcells 6259448 47.8 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars = rowVars(X, na.rm = FALSE), rowVarRowMeans = rowVarRowMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE), `genefilter::rowVars` = genefilter_rowVars(X,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 0.029384 | 0.0301155 | 0.0311118 | 0.0310525 | 0.0314355 | 0.051402 |
2 | colVarColMeans | 0.048120 | 0.0496390 | 0.0515907 | 0.0510435 | 0.0519615 | 0.115216 |
3 | apply+var | 0.165527 | 0.1698840 | 0.1742890 | 0.1728510 | 0.1750000 | 0.241151 |
4 | genefilter::rowVars(t(.)) | 0.368303 | 0.3710325 | 0.3751062 | 0.3734090 | 0.3768670 | 0.433726 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colVarColMeans | 1.637626 | 1.648287 | 1.658232 | 1.643781 | 1.652956 | 2.241469 |
3 | apply+var | 5.633236 | 5.641082 | 5.602014 | 5.566412 | 5.566955 | 4.691471 |
4 | genefilter::rowVars(t(.)) | 12.534134 | 12.320317 | 12.056700 | 12.025087 | 11.988580 | 8.437921 |
Table: Benchmarking of rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 0.030134 | 0.0310535 | 0.0318158 | 0.0317710 | 0.0322115 | 0.040320 |
3 | apply+var | 0.165937 | 0.1695655 | 0.1731759 | 0.1719755 | 0.1741725 | 0.237098 |
2 | rowVarRowMeans | 0.300213 | 0.3011130 | 0.3026639 | 0.3023300 | 0.3035415 | 0.315096 |
4 | genefilter::rowVars | 0.351820 | 0.3551775 | 0.3587482 | 0.3578755 | 0.3595995 | 0.429584 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
3 | apply+var | 5.506637 | 5.460431 | 5.443083 | 5.412971 | 5.407153 | 5.880407 |
2 | rowVarRowMeans | 9.962600 | 9.696588 | 9.513014 | 9.515911 | 9.423389 | 7.814881 |
4 | genefilter::rowVars | 11.675184 | 11.437600 | 11.275797 | 11.264219 | 11.163699 | 10.654365 |
Figure: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on integer+1000x10 data as well as rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colVars() and rowVars() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 29.384 | 30.1155 | 31.11185 | 31.0525 | 31.4355 | 51.402 |
2 | rowVars | 30.134 | 31.0535 | 31.81577 | 31.7710 | 32.2115 | 40.320 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowVars | 1.025524 | 1.031147 | 1.022625 | 1.023138 | 1.024685 | 0.7844053 |
Figure: Benchmarking of colVars() and rowVars() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3215040 171.8 5709258 305.0 5709258 305.0
Vcells 6255360 47.8 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars = colVars(X, na.rm = FALSE), colVarColMeans = colVarColMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE), `genefilter::rowVars(t(.))` = genefilter_colVars(X,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3215031 171.8 5709258 305.0 5709258 305.0
Vcells 6260398 47.8 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars = rowVars(X, na.rm = FALSE), rowVarRowMeans = rowVarRowMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE), `genefilter::rowVars` = genefilter_rowVars(X,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 0.025268 | 0.0279980 | 0.0303644 | 0.0294665 | 0.0314475 | 0.042629 |
2 | colVarColMeans | 0.052979 | 0.0591515 | 0.0652482 | 0.0624990 | 0.0680285 | 0.140843 |
4 | genefilter::rowVars(t(.)) | 0.162822 | 0.1796470 | 0.1945063 | 0.1870080 | 0.1974035 | 0.343357 |
3 | apply+var | 6.109926 | 6.6011225 | 7.2480532 | 7.0200620 | 7.2867205 | 13.687952 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | colVarColMeans | 2.096684 | 2.112704 | 2.148837 | 2.121019 | 2.16324 | 3.303925 |
4 | genefilter::rowVars(t(.)) | 6.443802 | 6.416423 | 6.405733 | 6.346461 | 6.27724 | 8.054540 |
3 | apply+var | 241.804892 | 235.771216 | 238.702258 | 238.238746 | 231.71064 | 321.094841 |
Table: Benchmarking of rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 0.024447 | 0.0276580 | 0.0304014 | 0.0293110 | 0.0322280 | 0.044348 |
2 | rowVarRowMeans | 0.094529 | 0.1030295 | 0.1100027 | 0.1080685 | 0.1118065 | 0.181899 |
4 | genefilter::rowVars | 0.146207 | 0.1590590 | 0.1733496 | 0.1686255 | 0.1809965 | 0.255233 |
3 | apply+var | 6.113934 | 6.6625510 | 7.3587865 | 7.0683160 | 7.3025360 | 20.319613 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVarRowMeans | 3.866691 | 3.725125 | 3.618347 | 3.686961 | 3.469235 | 4.101628 |
4 | genefilter::rowVars | 5.980570 | 5.750922 | 5.702032 | 5.752977 | 5.616126 | 5.755231 |
3 | apply+var | 250.089336 | 240.890556 | 242.054358 | 241.148920 | 226.589798 | 458.185555 |
Figure: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on integer+10x1000 data as well as rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colVars() and rowVars() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowVars | 24.447 | 27.658 | 30.40138 | 29.3110 | 32.2280 | 44.348 |
1 | colVars | 25.268 | 27.998 | 30.36441 | 29.4665 | 31.4475 | 42.629 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowVars | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 |
1 | colVars | 1.033583 | 1.012293 | 0.9987839 | 1.005305 | 0.9757819 | 0.9612384 |
Figure: Benchmarking of colVars() and rowVars() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3215266 171.8 5709258 305.0 5709258 305.0
Vcells 6256030 47.8 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars = colVars(X, na.rm = FALSE), colVarColMeans = colVarColMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE), `genefilter::rowVars(t(.))` = genefilter_colVars(X,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3215254 171.8 5709258 305.0 5709258 305.0
Vcells 6306063 48.2 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars = rowVars(X, na.rm = FALSE), rowVarRowMeans = rowVarRowMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE), `genefilter::rowVars` = genefilter_rowVars(X,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 0.275615 | 0.300162 | 0.3109073 | 0.3078700 | 0.3151855 | 0.395928 |
2 | colVarColMeans | 0.388405 | 0.425314 | 0.4463002 | 0.4345805 | 0.4442360 | 0.589709 |
4 | genefilter::rowVars(t(.)) | 1.301353 | 1.379997 | 1.5185748 | 1.4121535 | 1.4680055 | 2.273539 |
3 | apply+var | 7.176277 | 7.820049 | 8.6066052 | 8.0836630 | 8.3058275 | 19.486092 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colVarColMeans | 1.409230 | 1.416948 | 1.435477 | 1.411571 | 1.409443 | 1.489435 |
4 | genefilter::rowVars(t(.)) | 4.721633 | 4.597507 | 4.884333 | 4.586850 | 4.657592 | 5.742304 |
3 | apply+var | 26.037324 | 26.052763 | 27.682223 | 26.256742 | 26.352188 | 49.216251 |
Table: Benchmarking of rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 0.289459 | 0.3146985 | 0.3247815 | 0.3188465 | 0.327698 | 0.419879 |
2 | rowVarRowMeans | 0.801433 | 0.8602290 | 0.8776261 | 0.8724590 | 0.888086 | 1.071445 |
4 | genefilter::rowVars | 1.167510 | 1.2446495 | 1.3809156 | 1.2760420 | 1.305341 | 11.102619 |
3 | apply+var | 7.217139 | 7.8124385 | 8.5300494 | 8.1436900 | 8.316660 | 19.425627 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVarRowMeans | 2.768727 | 2.733502 | 2.702204 | 2.736298 | 2.710075 | 2.551795 |
4 | genefilter::rowVars | 4.033421 | 3.955054 | 4.251829 | 4.002057 | 3.983364 | 26.442425 |
3 | apply+var | 24.933200 | 24.825153 | 26.263960 | 25.541099 | 25.379037 | 46.264821 |
Figure: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on integer+100x1000 data as well as rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colVars() and rowVars() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 275.615 | 300.1620 | 310.9073 | 307.8700 | 315.1855 | 395.928 |
2 | rowVars | 289.459 | 314.6985 | 324.7815 | 318.8465 | 327.6980 | 419.879 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVars | 1.050229 | 1.048429 | 1.044625 | 1.035653 | 1.039699 | 1.060493 |
Figure: Benchmarking of colVars() and rowVars() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3215492 171.8 5709258 305.0 5709258 305.0
Vcells 6256798 47.8 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars = colVars(X, na.rm = FALSE), colVarColMeans = colVarColMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE), `genefilter::rowVars(t(.))` = genefilter_colVars(X,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3215486 171.8 5709258 305.0 5709258 305.0
Vcells 6306841 48.2 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars = rowVars(X, na.rm = FALSE), rowVarRowMeans = rowVarRowMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE), `genefilter::rowVars` = genefilter_rowVars(X,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 0.269730 | 0.2879225 | 0.2998887 | 0.2966835 | 0.3088765 | 0.367661 |
2 | colVarColMeans | 0.392556 | 0.4262895 | 0.5085648 | 0.4389355 | 0.4582800 | 6.883671 |
4 | genefilter::rowVars(t(.)) | 1.460079 | 1.5259420 | 1.6693504 | 1.5723330 | 1.6429030 | 8.278764 |
3 | apply+var | 1.528480 | 1.6058140 | 1.8092533 | 1.6467375 | 1.7313355 | 8.541611 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | colVarColMeans | 1.455367 | 1.480570 | 1.695845 | 1.479474 | 1.483700 | 18.72288 |
4 | genefilter::rowVars(t(.)) | 5.413113 | 5.299836 | 5.566567 | 5.299698 | 5.318964 | 22.51738 |
3 | apply+var | 5.666704 | 5.577244 | 6.033083 | 5.550486 | 5.605268 | 23.23230 |
Table: Benchmarking of rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 0.294086 | 0.3060105 | 0.3263007 | 0.318160 | 0.330092 | 0.520573 |
2 | rowVarRowMeans | 0.976035 | 1.0134155 | 1.0933112 | 1.059063 | 1.096492 | 1.661798 |
4 | genefilter::rowVars | 1.339642 | 1.4060590 | 1.5466028 | 1.440475 | 1.495157 | 8.205882 |
3 | apply+var | 1.509747 | 1.5914370 | 4.1817890 | 1.628740 | 1.691283 | 247.044896 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVarRowMeans | 3.318876 | 3.311702 | 3.350625 | 3.328710 | 3.321777 | 3.192248 |
4 | genefilter::rowVars | 4.555273 | 4.594806 | 4.739808 | 4.527516 | 4.529516 | 15.763172 |
3 | apply+var | 5.133692 | 5.200596 | 12.815753 | 5.119248 | 5.123672 | 474.563406 |
Figure: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on integer+1000x100 data as well as rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colVars() and rowVars() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 269.730 | 287.9225 | 299.8887 | 296.6835 | 308.8765 | 367.661 |
2 | rowVars | 294.086 | 306.0105 | 326.3007 | 318.1600 | 330.0920 | 520.573 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVars | 1.090298 | 1.062823 | 1.088073 | 1.072389 | 1.068686 | 1.415905 |
Figure: Benchmarking of colVars() and rowVars() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3215733 171.8 5709258 305.0 5709258 305.0
Vcells 6372765 48.7 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars = colVars(X, na.rm = FALSE), colVarColMeans = colVarColMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE), `genefilter::rowVars(t(.))` = genefilter_colVars(X,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3215715 171.8 5709258 305.0 5709258 305.0
Vcells 6372888 48.7 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars = rowVars(X, na.rm = FALSE), rowVarRowMeans = rowVarRowMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE), `genefilter::rowVars` = genefilter_rowVars(X,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 0.001556 | 0.0020510 | 0.0027148 | 0.0027855 | 0.0030660 | 0.011572 |
2 | colVarColMeans | 0.009149 | 0.0100160 | 0.0117929 | 0.0116530 | 0.0125135 | 0.027150 |
4 | genefilter::rowVars(t(.)) | 0.034330 | 0.0358905 | 0.0390460 | 0.0386250 | 0.0397710 | 0.128296 |
3 | apply+var | 0.075539 | 0.0776635 | 0.0800162 | 0.0792815 | 0.0810990 | 0.126887 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.00000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.00000 |
2 | colVarColMeans | 5.87982 | 4.883471 | 4.343861 | 4.18345 | 4.081376 | 2.34618 |
4 | genefilter::rowVars(t(.)) | 22.06298 | 17.499025 | 14.382360 | 13.86645 | 12.971624 | 11.08676 |
3 | apply+var | 48.54692 | 37.866163 | 29.473507 | 28.46222 | 26.451076 | 10.96500 |
Table: Benchmarking of rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 0.001387 | 0.0018590 | 0.0024424 | 0.0024515 | 0.0027560 | 0.011180 |
2 | rowVarRowMeans | 0.007707 | 0.0088080 | 0.0097236 | 0.0094245 | 0.0104575 | 0.028320 |
4 | genefilter::rowVars | 0.028887 | 0.0305515 | 0.0330583 | 0.0330115 | 0.0343530 | 0.073501 |
3 | apply+var | 0.075817 | 0.0771945 | 0.0799806 | 0.0788150 | 0.0797735 | 0.178445 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVarRowMeans | 5.556597 | 4.738031 | 3.981142 | 3.844381 | 3.794449 | 2.533095 |
4 | genefilter::rowVars | 20.826965 | 16.434373 | 13.535131 | 13.465837 | 12.464804 | 6.574329 |
3 | apply+var | 54.662581 | 41.524744 | 32.746607 | 32.149704 | 28.945392 | 15.961091 |
Figure: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on double+10x10 data as well as rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colVars() and rowVars() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowVars | 1.387 | 1.859 | 2.44241 | 2.4515 | 2.756 | 11.180 |
1 | colVars | 1.556 | 2.051 | 2.71485 | 2.7855 | 3.066 | 11.572 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colVars | 1.121846 | 1.103281 | 1.111546 | 1.136243 | 1.112482 | 1.035063 |
Figure: Benchmarking of colVars() and rowVars() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3215951 171.8 5709258 305.0 5709258 305.0
Vcells 6373811 48.7 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars = colVars(X, na.rm = FALSE), colVarColMeans = colVarColMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE), `genefilter::rowVars(t(.))` = genefilter_colVars(X,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3215942 171.8 5709258 305.0 5709258 305.0
Vcells 6383849 48.8 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars = rowVars(X, na.rm = FALSE), rowVarRowMeans = rowVarRowMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE), `genefilter::rowVars` = genefilter_rowVars(X,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 0.028936 | 0.031528 | 0.0326631 | 0.0327440 | 0.0335710 | 0.045097 |
2 | colVarColMeans | 0.033583 | 0.037066 | 0.0391861 | 0.0389680 | 0.0408225 | 0.052679 |
4 | genefilter::rowVars(t(.)) | 0.195892 | 0.207596 | 0.2148097 | 0.2118340 | 0.2189415 | 0.302210 |
3 | apply+var | 0.776041 | 0.813462 | 0.8292739 | 0.8308275 | 0.8420170 | 0.879850 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colVarColMeans | 1.160596 | 1.175653 | 1.199704 | 1.190081 | 1.216005 | 1.168127 |
4 | genefilter::rowVars(t(.)) | 6.769837 | 6.584496 | 6.576520 | 6.469399 | 6.521745 | 6.701333 |
3 | apply+var | 26.819222 | 25.801256 | 25.388693 | 25.373427 | 25.081678 | 19.510167 |
Table: Benchmarking of rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 0.029752 | 0.0312025 | 0.0321571 | 0.0320755 | 0.0330060 | 0.039333 |
2 | rowVarRowMeans | 0.056404 | 0.0595410 | 0.0616717 | 0.0610280 | 0.0627370 | 0.110391 |
4 | genefilter::rowVars | 0.138317 | 0.1463465 | 0.1509628 | 0.1502880 | 0.1539290 | 0.195537 |
3 | apply+var | 0.724393 | 0.7502555 | 0.7712210 | 0.7770370 | 0.7875495 | 0.831908 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVarRowMeans | 1.895805 | 1.908213 | 1.917824 | 1.902636 | 1.900776 | 2.806575 |
4 | genefilter::rowVars | 4.648998 | 4.690217 | 4.694534 | 4.685445 | 4.663667 | 4.971322 |
3 | apply+var | 24.347708 | 24.044724 | 23.982892 | 24.225250 | 23.860798 | 21.150383 |
Figure: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on double+100x100 data as well as rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colVars() and rowVars() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowVars | 29.752 | 31.2025 | 32.15713 | 32.0755 | 33.006 | 39.333 |
1 | colVars | 28.936 | 31.5280 | 32.66312 | 32.7440 | 33.571 | 45.097 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowVars | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colVars | 0.9725733 | 1.010432 | 1.015735 | 1.020841 | 1.017118 | 1.146544 |
Figure: Benchmarking of colVars() and rowVars() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3216174 171.8 5709258 305.0 5709258 305.0
Vcells 6375033 48.7 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars = colVars(X, na.rm = FALSE), colVarColMeans = colVarColMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE), `genefilter::rowVars(t(.))` = genefilter_colVars(X,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3216168 171.8 5709258 305.0 5709258 305.0
Vcells 6385076 48.8 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars = rowVars(X, na.rm = FALSE), rowVarRowMeans = rowVarRowMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE), `genefilter::rowVars` = genefilter_rowVars(X,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 0.029681 | 0.0306250 | 0.0314739 | 0.0313115 | 0.0319810 | 0.043013 |
2 | colVarColMeans | 0.035095 | 0.0375480 | 0.0395102 | 0.0392315 | 0.0401390 | 0.084315 |
3 | apply+var | 0.200188 | 0.2049125 | 0.2087912 | 0.2074580 | 0.2101885 | 0.268354 |
4 | genefilter::rowVars(t(.)) | 0.291321 | 0.2946895 | 0.3000324 | 0.2983215 | 0.3031665 | 0.355143 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colVarColMeans | 1.182406 | 1.226057 | 1.255334 | 1.252942 | 1.255089 | 1.960221 |
3 | apply+var | 6.744651 | 6.691020 | 6.633793 | 6.625617 | 6.572293 | 6.238905 |
4 | genefilter::rowVars(t(.)) | 9.815067 | 9.622514 | 9.532743 | 9.527538 | 9.479582 | 8.256643 |
Table: Benchmarking of rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 0.031358 | 0.0327635 | 0.0336445 | 0.0334860 | 0.0339690 | 0.042074 |
2 | rowVarRowMeans | 0.056548 | 0.0581170 | 0.0591101 | 0.0587185 | 0.0596780 | 0.068328 |
3 | apply+var | 0.157372 | 0.1602390 | 0.1634272 | 0.1621590 | 0.1642375 | 0.227331 |
4 | genefilter::rowVars | 0.235624 | 0.2379485 | 0.2409243 | 0.2399785 | 0.2421960 | 0.318149 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVarRowMeans | 1.803304 | 1.773834 | 1.756901 | 1.753524 | 1.756837 | 1.623996 |
3 | apply+var | 5.018560 | 4.890778 | 4.857469 | 4.842591 | 4.834923 | 5.403123 |
4 | genefilter::rowVars | 7.514000 | 7.262609 | 7.160877 | 7.166532 | 7.129913 | 7.561653 |
Figure: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on double+1000x10 data as well as rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colVars() and rowVars() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 29.681 | 30.6250 | 31.47388 | 31.3115 | 31.981 | 43.013 |
2 | rowVars | 31.358 | 32.7635 | 33.64453 | 33.4860 | 33.969 | 42.074 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowVars | 1.056501 | 1.069829 | 1.068967 | 1.069447 | 1.062162 | 0.9781694 |
Figure: Benchmarking of colVars() and rowVars() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3216398 171.8 5709258 305.0 5709258 305.0
Vcells 6375184 48.7 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars = colVars(X, na.rm = FALSE), colVarColMeans = colVarColMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE), `genefilter::rowVars(t(.))` = genefilter_colVars(X,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3216389 171.8 5709258 305.0 5709258 305.0
Vcells 6385222 48.8 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars = rowVars(X, na.rm = FALSE), rowVarRowMeans = rowVarRowMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE), `genefilter::rowVars` = genefilter_rowVars(X,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 0.022920 | 0.0259430 | 0.0291069 | 0.0273310 | 0.0312695 | 0.073139 |
2 | colVarColMeans | 0.038597 | 0.0434255 | 0.0493707 | 0.0468000 | 0.0526110 | 0.080217 |
4 | genefilter::rowVars(t(.)) | 0.152831 | 0.1637990 | 0.2377787 | 0.1725215 | 0.1887395 | 5.921388 |
3 | apply+var | 6.188453 | 6.5538515 | 7.1599027 | 6.9743715 | 7.2102750 | 13.837310 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colVarColMeans | 1.683988 | 1.673881 | 1.696183 | 1.712341 | 1.682502 | 1.096775 |
4 | genefilter::rowVars(t(.)) | 6.668019 | 6.313803 | 8.169144 | 6.312301 | 6.035898 | 80.960746 |
3 | apply+var | 270.002312 | 252.625043 | 245.986188 | 255.181717 | 230.584915 | 189.191950 |
Table: Benchmarking of rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 0.023676 | 0.0254230 | 0.0280148 | 0.0266790 | 0.0292275 | 0.043177 |
2 | rowVarRowMeans | 0.058777 | 0.0634995 | 0.0692870 | 0.0669680 | 0.0712410 | 0.136778 |
4 | genefilter::rowVars | 0.131994 | 0.1434805 | 0.1563137 | 0.1497585 | 0.1597975 | 0.256463 |
3 | apply+var | 6.166386 | 6.5458450 | 7.1699319 | 6.9323980 | 7.1196035 | 13.766868 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVarRowMeans | 2.482556 | 2.497719 | 2.473225 | 2.510139 | 2.437465 | 3.167844 |
4 | genefilter::rowVars | 5.575013 | 5.643728 | 5.579676 | 5.613348 | 5.467368 | 5.939806 |
3 | apply+var | 260.448809 | 257.477284 | 255.933444 | 259.844747 | 243.592627 | 318.847257 |
Figure: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on double+10x1000 data as well as rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colVars() and rowVars() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowVars | 23.676 | 25.423 | 28.01483 | 26.679 | 29.2275 | 43.177 |
1 | colVars | 22.920 | 25.943 | 29.10693 | 27.331 | 31.2695 | 73.139 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowVars | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1 | colVars | 0.9680689 | 1.020454 | 1.038983 | 1.024439 | 1.069866 | 1.693934 |
Figure: Benchmarking of colVars() and rowVars() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3216624 171.8 5709258 305.0 5709258 305.0
Vcells 6376639 48.7 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars = colVars(X, na.rm = FALSE), colVarColMeans = colVarColMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE), `genefilter::rowVars(t(.))` = genefilter_colVars(X,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3216612 171.8 5709258 305.0 5709258 305.0
Vcells 6476672 49.5 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars = rowVars(X, na.rm = FALSE), rowVarRowMeans = rowVarRowMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE), `genefilter::rowVars` = genefilter_rowVars(X,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | colVarColMeans | 0.211638 | 0.253694 | 0.2783711 | 0.2667265 | 0.2981645 | 0.495933 |
1 | colVars | 0.274078 | 0.290533 | 0.3031686 | 0.3000850 | 0.3102310 | 0.373429 |
4 | genefilter::rowVars(t(.)) | 1.489826 | 1.654986 | 1.8198173 | 1.7153285 | 1.7810035 | 10.620372 |
3 | apply+var | 7.511483 | 8.009573 | 8.8056520 | 8.2848490 | 8.5225565 | 26.018903 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | colVarColMeans | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
1 | colVars | 1.295032 | 1.145210 | 1.089081 | 1.125066 | 1.040469 | 0.7529828 |
4 | genefilter::rowVars(t(.)) | 7.039501 | 6.523552 | 6.537378 | 6.431039 | 5.973224 | 21.4149331 |
3 | apply+var | 35.492128 | 31.571787 | 31.632776 | 31.061214 | 28.583405 | 52.4645527 |
Table: Benchmarking of rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 0.289432 | 0.3031925 | 0.3394843 | 0.3198170 | 0.3534725 | 0.500898 |
2 | rowVarRowMeans | 0.440619 | 0.4814455 | 0.5062973 | 0.4985045 | 0.5123345 | 0.755062 |
4 | genefilter::rowVars | 0.968830 | 1.0926175 | 1.2465513 | 1.1379740 | 1.1809715 | 9.777972 |
3 | apply+var | 7.117417 | 7.5680465 | 8.6340100 | 7.9284915 | 8.8480955 | 19.268878 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVarRowMeans | 1.522358 | 1.587920 | 1.491372 | 1.558718 | 1.449432 | 1.507417 |
4 | genefilter::rowVars | 3.347349 | 3.603709 | 3.671897 | 3.558204 | 3.341056 | 19.520885 |
3 | apply+var | 24.590982 | 24.961193 | 25.432723 | 24.790713 | 25.031920 | 38.468666 |
Figure: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on double+100x1000 data as well as rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colVars() and rowVars() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 274.078 | 290.5330 | 303.1686 | 300.085 | 310.2310 | 373.429 |
2 | rowVars | 289.432 | 303.1925 | 339.4843 | 319.817 | 353.4725 | 500.898 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVars | 1.056021 | 1.043573 | 1.119787 | 1.065755 | 1.139385 | 1.341347 |
Figure: Benchmarking of colVars() and rowVars() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3216850 171.8 5709258 305.0 5709258 305.0
Vcells 6376786 48.7 22345847 170.5 56666022 432.4
> colStats <- microbenchmark(colVars = colVars(X, na.rm = FALSE), colVarColMeans = colVarColMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 2L, FUN = var, na.rm = FALSE), `genefilter::rowVars(t(.))` = genefilter_colVars(X,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3216844 171.8 5709258 305.0 5709258 305.0
Vcells 6476829 49.5 22345847 170.5 56666022 432.4
> rowStats <- microbenchmark(rowVars = rowVars(X, na.rm = FALSE), rowVarRowMeans = rowVarRowMeans(X,
+ na.rm = FALSE), `apply+var` = apply(X, MARGIN = 1L, FUN = var, na.rm = FALSE), `genefilter::rowVars` = genefilter_rowVars(X,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | colVarColMeans | 0.230082 | 0.2452775 | 0.4582199 | 0.2825605 | 0.4763775 | 10.352064 |
1 | colVars | 0.268699 | 0.2763685 | 0.3032927 | 0.2976315 | 0.3291365 | 0.385134 |
4 | genefilter::rowVars(t(.)) | 1.193049 | 1.2922330 | 1.7129067 | 1.4956065 | 2.0847410 | 7.467183 |
3 | apply+var | 1.395430 | 1.4664860 | 1.8258231 | 1.6921730 | 1.9289650 | 8.239629 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | colVarColMeans | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 |
1 | colVars | 1.167840 | 1.126758 | 0.6618933 | 1.053337 | 0.6909153 | 0.0372036 |
4 | genefilter::rowVars(t(.)) | 5.185321 | 5.268453 | 3.7381758 | 5.293049 | 4.3762373 | 0.7213231 |
3 | apply+var | 6.064925 | 5.978885 | 3.9845999 | 5.988710 | 4.0492362 | 0.7959407 |
Table: Benchmarking of rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 0.295673 | 0.3097960 | 0.3525580 | 0.327192 | 0.3823360 | 0.602889 |
2 | rowVarRowMeans | 0.447263 | 0.4719035 | 0.5568056 | 0.520182 | 0.5852035 | 1.420983 |
4 | genefilter::rowVars | 1.059860 | 1.0947750 | 1.4357536 | 1.161610 | 1.3250435 | 7.669609 |
3 | apply+var | 1.427955 | 1.4776015 | 1.8454647 | 1.565719 | 1.8629885 | 8.765901 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVarRowMeans | 1.512695 | 1.523272 | 1.579331 | 1.589837 | 1.530600 | 2.356956 |
4 | genefilter::rowVars | 3.584568 | 3.533858 | 4.072390 | 3.550240 | 3.465652 | 12.721428 |
3 | apply+var | 4.829508 | 4.769595 | 5.234500 | 4.785323 | 4.872647 | 14.539826 |
Figure: Benchmarking of colVars(), colVarColMeans(), apply+var() and genefilter::rowVars(t(.))() on double+1000x100 data as well as rowVars(), rowVarRowMeans(), apply+var() and genefilter::rowVars() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colVars() and rowVars() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 268.699 | 276.3685 | 303.2927 | 297.6315 | 329.1365 | 385.134 |
2 | rowVars | 295.673 | 309.7960 | 352.5580 | 327.1920 | 382.3360 | 602.889 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colVars | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowVars | 1.100387 | 1.120953 | 1.162435 | 1.099319 | 1.161633 | 1.565401 |
Figure: Benchmarking of colVars() and rowVars() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 35.3 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colVars')
Copyright Henrik Bengtsson. Last updated on 2019-09-10 20:55:08 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>