-
Notifications
You must be signed in to change notification settings - Fork 34
colRowOrderStats_subset
matrixStats: Benchmark report
This report benchmark the performance of colOrderStats() and rowOrderStats() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3160715 168.9 5709258 305.0 5709258 305.0
Vcells 6170406 47.1 22267496 169.9 56666022 432.4
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats_X_S = colOrderStats(X_S, which = which, na.rm = FALSE),
+ `colOrderStats(X, rows, cols)` = colOrderStats(X, rows = rows, cols = cols, which = which, na.rm = FALSE),
+ `colOrderStats(X[rows, cols])` = colOrderStats(X[rows, cols], which = which, na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3159093 168.8 5709258 305.0 5709258 305.0
Vcells 6165814 47.1 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowOrderStats_X_S = rowOrderStats(X_S, which = which, na.rm = FALSE),
+ `rowOrderStats(X, cols, rows)` = rowOrderStats(X, rows = cols, cols = rows, which = which, na.rm = FALSE),
+ `rowOrderStats(X[cols, rows])` = rowOrderStats(X[cols, rows], which = which, na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 0.001679 | 0.0017115 | 0.0028944 | 0.001741 | 0.001896 | 0.110035 |
2 | colOrderStats(X, rows, cols) | 0.001831 | 0.0019415 | 0.0020506 | 0.001986 | 0.002089 | 0.003936 |
3 | colOrderStats(X[rows, cols]) | 0.002197 | 0.0024350 | 0.0026608 | 0.002531 | 0.002690 | 0.009370 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colOrderStats(X, rows, cols) | 1.090530 | 1.134385 | 0.708472 | 1.140724 | 1.101793 | 0.0357704 |
3 | colOrderStats(X[rows, cols]) | 1.308517 | 1.422729 | 0.919295 | 1.453762 | 1.418776 | 0.0851547 |
Table: Benchmarking of rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 0.001644 | 0.001686 | 0.0018210 | 0.0017225 | 0.0019030 | 0.004463 |
2 | rowOrderStats(X, cols, rows) | 0.001829 | 0.001910 | 0.0031059 | 0.0019580 | 0.0021190 | 0.108610 |
3 | rowOrderStats(X[cols, rows]) | 0.002221 | 0.002407 | 0.0026516 | 0.0025335 | 0.0027135 | 0.007356 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats(X, cols, rows) | 1.112530 | 1.132859 | 1.705618 | 1.136720 | 1.113505 | 24.335649 |
3 | rowOrderStats(X[cols, rows]) | 1.350973 | 1.427639 | 1.456139 | 1.470827 | 1.425906 | 1.648219 |
Figure: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on integer+10x10 data as well as rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowOrderStats_X_S | 1.644 | 1.6860 | 1.82100 | 1.7225 | 1.903 | 4.463 |
1 | colOrderStats_X_S | 1.679 | 1.7115 | 2.89437 | 1.7410 | 1.896 | 110.035 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.00000 | 1.00000 | 1.0000000 | 1.00000 |
1 | colOrderStats_X_S | 1.021289 | 1.015125 | 1.58944 | 1.01074 | 0.9963216 | 24.65494 |
Figure: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3157722 168.7 5709258 305.0 5709258 305.0
Vcells 5834137 44.6 22267496 169.9 56666022 432.4
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats_X_S = colOrderStats(X_S, which = which, na.rm = FALSE),
+ `colOrderStats(X, rows, cols)` = colOrderStats(X, rows = rows, cols = cols, which = which, na.rm = FALSE),
+ `colOrderStats(X[rows, cols])` = colOrderStats(X[rows, cols], which = which, na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3157715 168.7 5709258 305.0 5709258 305.0
Vcells 5839219 44.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowOrderStats_X_S = rowOrderStats(X_S, which = which, na.rm = FALSE),
+ `rowOrderStats(X, cols, rows)` = rowOrderStats(X, rows = cols, cols = rows, which = which, na.rm = FALSE),
+ `rowOrderStats(X[cols, rows])` = rowOrderStats(X[cols, rows], which = which, na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 0.045465 | 0.0464495 | 0.0468889 | 0.0468450 | 0.0473160 | 0.051183 |
2 | colOrderStats(X, rows, cols) | 0.050398 | 0.0515100 | 0.0520990 | 0.0518795 | 0.0523495 | 0.060443 |
3 | colOrderStats(X[rows, cols]) | 0.053829 | 0.0549355 | 0.0558574 | 0.0553235 | 0.0558250 | 0.093930 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colOrderStats(X, rows, cols) | 1.108501 | 1.108946 | 1.111117 | 1.107471 | 1.106380 | 1.180919 |
3 | colOrderStats(X[rows, cols]) | 1.183966 | 1.182693 | 1.191273 | 1.180991 | 1.179833 | 1.835180 |
Table: Benchmarking of rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 0.047157 | 0.0479810 | 0.0487817 | 0.0484515 | 0.0489790 | 0.057191 |
2 | rowOrderStats(X, cols, rows) | 0.050720 | 0.0515625 | 0.0525264 | 0.0519995 | 0.0523430 | 0.091926 |
3 | rowOrderStats(X[cols, rows]) | 0.055143 | 0.0566260 | 0.0581534 | 0.0571055 | 0.0578135 | 0.097305 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats(X, cols, rows) | 1.075556 | 1.074644 | 1.076763 | 1.073228 | 1.068682 | 1.607351 |
3 | rowOrderStats(X[cols, rows]) | 1.169349 | 1.180176 | 1.192115 | 1.178612 | 1.180373 | 1.701404 |
Figure: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on integer+100x100 data as well as rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 45.465 | 46.4495 | 46.88887 | 46.8450 | 47.316 | 51.183 |
2 | rowOrderStats_X_S | 47.157 | 47.9810 | 48.78173 | 48.4515 | 48.979 | 57.191 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats_X_S | 1.037215 | 1.032971 | 1.040369 | 1.034294 | 1.035147 | 1.117383 |
Figure: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3158479 168.7 5709258 305.0 5709258 305.0
Vcells 5838506 44.6 22267496 169.9 56666022 432.4
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats_X_S = colOrderStats(X_S, which = which, na.rm = FALSE),
+ `colOrderStats(X, rows, cols)` = colOrderStats(X, rows = rows, cols = cols, which = which, na.rm = FALSE),
+ `colOrderStats(X[rows, cols])` = colOrderStats(X[rows, cols], which = which, na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3158469 168.7 5709258 305.0 5709258 305.0
Vcells 5843583 44.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowOrderStats_X_S = rowOrderStats(X_S, which = which, na.rm = FALSE),
+ `rowOrderStats(X, cols, rows)` = rowOrderStats(X, rows = cols, cols = rows, which = which, na.rm = FALSE),
+ `rowOrderStats(X[cols, rows])` = rowOrderStats(X[cols, rows], which = which, na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 0.040612 | 0.0416015 | 0.0422597 | 0.042175 | 0.0425080 | 0.053002 |
2 | colOrderStats(X, rows, cols) | 0.046201 | 0.0468570 | 0.0477479 | 0.047254 | 0.0476280 | 0.091428 |
3 | colOrderStats(X[rows, cols]) | 0.048938 | 0.0500370 | 0.0508741 | 0.050405 | 0.0508885 | 0.064984 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colOrderStats(X, rows, cols) | 1.137619 | 1.126330 | 1.129867 | 1.120427 | 1.120448 | 1.724992 |
3 | colOrderStats(X[rows, cols]) | 1.205013 | 1.202769 | 1.203843 | 1.195139 | 1.197151 | 1.226067 |
Table: Benchmarking of rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 0.043081 | 0.0440415 | 0.0451259 | 0.044399 | 0.0449625 | 0.088380 |
2 | rowOrderStats(X, cols, rows) | 0.047081 | 0.0481515 | 0.0491258 | 0.048543 | 0.0489885 | 0.072370 |
3 | rowOrderStats(X[cols, rows]) | 0.052782 | 0.0536900 | 0.0553989 | 0.054027 | 0.0548870 | 0.092495 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowOrderStats(X, cols, rows) | 1.092848 | 1.093321 | 1.088639 | 1.093335 | 1.089541 | 0.8188504 |
3 | rowOrderStats(X[cols, rows]) | 1.225181 | 1.219078 | 1.227652 | 1.216852 | 1.220728 | 1.0465603 |
Figure: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on integer+1000x10 data as well as rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 40.612 | 41.6015 | 42.25973 | 42.175 | 42.5080 | 53.002 |
2 | rowOrderStats_X_S | 43.081 | 44.0415 | 45.12588 | 44.399 | 44.9625 | 88.380 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats_X_S | 1.060795 | 1.058652 | 1.067822 | 1.052733 | 1.057742 | 1.667484 |
Figure: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3158685 168.7 5709258 305.0 5709258 305.0
Vcells 5839445 44.6 22267496 169.9 56666022 432.4
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats_X_S = colOrderStats(X_S, which = which, na.rm = FALSE),
+ `colOrderStats(X, rows, cols)` = colOrderStats(X, rows = rows, cols = cols, which = which, na.rm = FALSE),
+ `colOrderStats(X[rows, cols])` = colOrderStats(X[rows, cols], which = which, na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3158675 168.7 5709258 305.0 5709258 305.0
Vcells 5844522 44.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowOrderStats_X_S = rowOrderStats(X_S, which = which, na.rm = FALSE),
+ `rowOrderStats(X, cols, rows)` = rowOrderStats(X, rows = cols, cols = rows, which = which, na.rm = FALSE),
+ `rowOrderStats(X[cols, rows])` = rowOrderStats(X[cols, rows], which = which, na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 0.035543 | 0.0379300 | 0.0395150 | 0.0393480 | 0.0406585 | 0.047658 |
2 | colOrderStats(X, rows, cols) | 0.043625 | 0.0459880 | 0.0472274 | 0.0468690 | 0.0477795 | 0.089594 |
3 | colOrderStats(X[rows, cols]) | 0.045421 | 0.0473875 | 0.0491550 | 0.0491935 | 0.0505995 | 0.060045 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colOrderStats(X, rows, cols) | 1.227386 | 1.212444 | 1.195178 | 1.191141 | 1.175142 | 1.879936 |
3 | colOrderStats(X[rows, cols]) | 1.277917 | 1.249341 | 1.243958 | 1.250216 | 1.244500 | 1.259914 |
Table: Benchmarking of rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 0.036867 | 0.038759 | 0.0406265 | 0.040116 | 0.0413585 | 0.088381 |
2 | rowOrderStats(X, cols, rows) | 0.042657 | 0.045875 | 0.0466163 | 0.046849 | 0.0476395 | 0.050586 |
3 | rowOrderStats(X[cols, rows]) | 0.044834 | 0.047037 | 0.0485303 | 0.048292 | 0.0496065 | 0.067829 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowOrderStats(X, cols, rows) | 1.157051 | 1.183596 | 1.147435 | 1.167838 | 1.151867 | 0.5723628 |
3 | rowOrderStats(X[cols, rows]) | 1.216101 | 1.213576 | 1.194548 | 1.203809 | 1.199427 | 0.7674613 |
Figure: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on integer+10x1000 data as well as rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 35.543 | 37.930 | 39.51499 | 39.348 | 40.6585 | 47.658 |
2 | rowOrderStats_X_S | 36.867 | 38.759 | 40.62648 | 40.116 | 41.3585 | 88.381 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats_X_S | 1.037251 | 1.021856 | 1.028128 | 1.019518 | 1.017217 | 1.854484 |
Figure: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3158884 168.8 5709258 305.0 5709258 305.0
Vcells 5862181 44.8 22267496 169.9 56666022 432.4
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats_X_S = colOrderStats(X_S, which = which, na.rm = FALSE),
+ `colOrderStats(X, rows, cols)` = colOrderStats(X, rows = rows, cols = cols, which = which, na.rm = FALSE),
+ `colOrderStats(X[rows, cols])` = colOrderStats(X[rows, cols], which = which, na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3158874 168.8 5709258 305.0 5709258 305.0
Vcells 5912258 45.2 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowOrderStats_X_S = rowOrderStats(X_S, which = which, na.rm = FALSE),
+ `rowOrderStats(X, cols, rows)` = rowOrderStats(X, rows = cols, cols = rows, which = which, na.rm = FALSE),
+ `rowOrderStats(X[cols, rows])` = rowOrderStats(X[cols, rows], which = which, na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 0.511953 | 0.5136960 | 0.5164118 | 0.5144935 | 0.5156305 | 0.582297 |
2 | colOrderStats(X, rows, cols) | 0.553590 | 0.5558820 | 0.5663287 | 0.5565210 | 0.5574335 | 0.980120 |
3 | colOrderStats(X[rows, cols]) | 0.584424 | 0.5857075 | 0.5918786 | 0.5873245 | 0.5894085 | 0.730817 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colOrderStats(X, rows, cols) | 1.081330 | 1.082123 | 1.096661 | 1.081687 | 1.081072 | 1.683196 |
3 | colOrderStats(X[rows, cols]) | 1.141558 | 1.140183 | 1.146137 | 1.141559 | 1.143083 | 1.255059 |
Table: Benchmarking of rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 0.524200 | 0.5264185 | 0.5313409 | 0.5273445 | 0.5287520 | 0.685987 |
2 | rowOrderStats(X, cols, rows) | 0.562353 | 0.5651015 | 0.5770728 | 0.5664360 | 0.5684105 | 1.222077 |
3 | rowOrderStats(X[cols, rows]) | 0.588049 | 0.5904985 | 0.6012168 | 0.5920775 | 0.5935995 | 0.986854 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats(X, cols, rows) | 1.072783 | 1.073483 | 1.086069 | 1.074129 | 1.075004 | 1.781487 |
3 | rowOrderStats(X[cols, rows]) | 1.121803 | 1.121728 | 1.131508 | 1.122753 | 1.122643 | 1.438590 |
Figure: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on integer+100x1000 data as well as rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 511.953 | 513.6960 | 516.4118 | 514.4935 | 515.6305 | 582.297 |
2 | rowOrderStats_X_S | 524.200 | 526.4185 | 531.3409 | 527.3445 | 528.7520 | 685.987 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats_X_S | 1.023922 | 1.024767 | 1.028909 | 1.024978 | 1.025448 | 1.178071 |
Figure: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3159100 168.8 5709258 305.0 5709258 305.0
Vcells 5862952 44.8 22267496 169.9 56666022 432.4
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats_X_S = colOrderStats(X_S, which = which, na.rm = FALSE),
+ `colOrderStats(X, rows, cols)` = colOrderStats(X, rows = rows, cols = cols, which = which, na.rm = FALSE),
+ `colOrderStats(X[rows, cols])` = colOrderStats(X[rows, cols], which = which, na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3159090 168.8 5709258 305.0 5709258 305.0
Vcells 5913029 45.2 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowOrderStats_X_S = rowOrderStats(X_S, which = which, na.rm = FALSE),
+ `rowOrderStats(X, cols, rows)` = rowOrderStats(X, rows = cols, cols = rows, which = which, na.rm = FALSE),
+ `rowOrderStats(X[cols, rows])` = rowOrderStats(X[cols, rows], which = which, na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 0.468832 | 0.470952 | 0.4723511 | 0.4715670 | 0.4726180 | 0.509464 |
2 | colOrderStats(X, rows, cols) | 0.510461 | 0.511813 | 0.5131895 | 0.5126730 | 0.5137085 | 0.531828 |
3 | colOrderStats(X[rows, cols]) | 0.533324 | 0.534661 | 0.5369369 | 0.5352865 | 0.5364225 | 0.646107 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colOrderStats(X, rows, cols) | 1.088793 | 1.086763 | 1.086458 | 1.087169 | 1.086942 | 1.043897 |
3 | colOrderStats(X[rows, cols]) | 1.137559 | 1.135277 | 1.136733 | 1.135123 | 1.135002 | 1.268209 |
Table: Benchmarking of rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 0.491882 | 0.4935045 | 0.4950448 | 0.4943935 | 0.4958175 | 0.520219 |
2 | rowOrderStats(X, cols, rows) | 0.526540 | 0.5287630 | 0.5295081 | 0.5293495 | 0.5302955 | 0.533636 |
3 | rowOrderStats(X[cols, rows]) | 0.562691 | 0.5647765 | 0.5680307 | 0.5658485 | 0.5683605 | 0.672219 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats(X, cols, rows) | 1.070460 | 1.071445 | 1.069616 | 1.070705 | 1.069538 | 1.025791 |
3 | rowOrderStats(X[cols, rows]) | 1.143955 | 1.144420 | 1.147433 | 1.144531 | 1.146310 | 1.292185 |
Figure: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on integer+1000x100 data as well as rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 468.832 | 470.9520 | 472.3511 | 471.5670 | 472.6180 | 509.464 |
2 | rowOrderStats_X_S | 491.882 | 493.5045 | 495.0448 | 494.3935 | 495.8175 | 520.219 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | rowOrderStats_X_S | 1.049165 | 1.047887 | 1.048044 | 1.048406 | 1.049087 | 1.02111 |
Figure: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3159318 168.8 5709258 305.0 5709258 305.0
Vcells 5954077 45.5 22267496 169.9 56666022 432.4
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats_X_S = colOrderStats(X_S, which = which, na.rm = FALSE),
+ `colOrderStats(X, rows, cols)` = colOrderStats(X, rows = rows, cols = cols, which = which, na.rm = FALSE),
+ `colOrderStats(X[rows, cols])` = colOrderStats(X[rows, cols], which = which, na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3159299 168.8 5709258 305.0 5709258 305.0
Vcells 5954239 45.5 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowOrderStats_X_S = rowOrderStats(X_S, which = which, na.rm = FALSE),
+ `rowOrderStats(X, cols, rows)` = rowOrderStats(X, rows = cols, cols = rows, which = which, na.rm = FALSE),
+ `rowOrderStats(X[cols, rows])` = rowOrderStats(X[cols, rows], which = which, na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 0.001858 | 0.0019260 | 0.0021853 | 0.0019720 | 0.0020450 | 0.018716 |
2 | colOrderStats(X, rows, cols) | 0.002082 | 0.0021705 | 0.0023088 | 0.0022235 | 0.0023195 | 0.005371 |
3 | colOrderStats(X[rows, cols]) | 0.002534 | 0.0028185 | 0.0029899 | 0.0029035 | 0.0030220 | 0.008190 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colOrderStats(X, rows, cols) | 1.120560 | 1.126947 | 1.056518 | 1.127536 | 1.134230 | 0.2869737 |
3 | colOrderStats(X[rows, cols]) | 1.363832 | 1.463396 | 1.368193 | 1.472363 | 1.477751 | 0.4375935 |
Table: Benchmarking of rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 0.001846 | 0.0018910 | 0.0020326 | 0.0019495 | 0.0020870 | 0.004615 |
2 | rowOrderStats(X, cols, rows) | 0.002075 | 0.0021185 | 0.0026252 | 0.0021980 | 0.0023625 | 0.038320 |
3 | rowOrderStats(X[cols, rows]) | 0.002401 | 0.0026410 | 0.0028597 | 0.0027630 | 0.0028915 | 0.008576 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats(X, cols, rows) | 1.124052 | 1.120307 | 1.291514 | 1.127469 | 1.132008 | 8.303359 |
3 | rowOrderStats(X[cols, rows]) | 1.300650 | 1.396616 | 1.406877 | 1.417286 | 1.385482 | 1.858288 |
Figure: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on double+10x10 data as well as rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowOrderStats_X_S | 1.846 | 1.891 | 2.03263 | 1.9495 | 2.087 | 4.615 |
1 | colOrderStats_X_S | 1.858 | 1.926 | 2.18532 | 1.9720 | 2.045 | 18.716 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.000000 |
1 | colOrderStats_X_S | 1.006501 | 1.018509 | 1.075119 | 1.011541 | 0.9798754 | 4.055471 |
Figure: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3159520 168.8 5709258 305.0 5709258 305.0
Vcells 5960022 45.5 22267496 169.9 56666022 432.4
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats_X_S = colOrderStats(X_S, which = which, na.rm = FALSE),
+ `colOrderStats(X, rows, cols)` = colOrderStats(X, rows = rows, cols = cols, which = which, na.rm = FALSE),
+ `colOrderStats(X[rows, cols])` = colOrderStats(X[rows, cols], which = which, na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3159510 168.8 5709258 305.0 5709258 305.0
Vcells 5970099 45.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowOrderStats_X_S = rowOrderStats(X_S, which = which, na.rm = FALSE),
+ `rowOrderStats(X, cols, rows)` = rowOrderStats(X, rows = cols, cols = rows, which = which, na.rm = FALSE),
+ `rowOrderStats(X[cols, rows])` = rowOrderStats(X[cols, rows], which = which, na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 0.077925 | 0.0785155 | 0.0787999 | 0.0787215 | 0.078998 | 0.082369 |
2 | colOrderStats(X, rows, cols) | 0.082524 | 0.0831375 | 0.0836289 | 0.0833135 | 0.083621 | 0.098135 |
3 | colOrderStats(X[rows, cols]) | 0.094363 | 0.0947905 | 0.0957399 | 0.0949730 | 0.095258 | 0.152458 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colOrderStats(X, rows, cols) | 1.059018 | 1.058867 | 1.061282 | 1.058332 | 1.058520 | 1.191407 |
3 | colOrderStats(X[rows, cols]) | 1.210946 | 1.207284 | 1.214975 | 1.206443 | 1.205828 | 1.850915 |
Table: Benchmarking of rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 0.078604 | 0.0792060 | 0.0794728 | 0.0793895 | 0.0795815 | 0.084939 |
2 | rowOrderStats(X, cols, rows) | 0.082436 | 0.0829105 | 0.0834196 | 0.0832010 | 0.0834545 | 0.091404 |
3 | rowOrderStats(X[cols, rows]) | 0.086782 | 0.0872640 | 0.0881903 | 0.0875140 | 0.0877785 | 0.126035 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats(X, cols, rows) | 1.048751 | 1.046770 | 1.049662 | 1.048010 | 1.048667 | 1.076113 |
3 | rowOrderStats(X[cols, rows]) | 1.104040 | 1.101735 | 1.109690 | 1.102337 | 1.103001 | 1.483830 |
Figure: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on double+100x100 data as well as rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 77.925 | 78.5155 | 78.79991 | 78.7215 | 78.9980 | 82.369 |
2 | rowOrderStats_X_S | 78.604 | 79.2060 | 79.47285 | 79.3895 | 79.5815 | 84.939 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats_X_S | 1.008714 | 1.008794 | 1.00854 | 1.008486 | 1.007386 | 1.031201 |
Figure: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3159729 168.8 5709258 305.0 5709258 305.0
Vcells 5961532 45.5 22267496 169.9 56666022 432.4
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats_X_S = colOrderStats(X_S, which = which, na.rm = FALSE),
+ `colOrderStats(X, rows, cols)` = colOrderStats(X, rows = rows, cols = cols, which = which, na.rm = FALSE),
+ `colOrderStats(X[rows, cols])` = colOrderStats(X[rows, cols], which = which, na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3159719 168.8 5709258 305.0 5709258 305.0
Vcells 5971609 45.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowOrderStats_X_S = rowOrderStats(X_S, which = which, na.rm = FALSE),
+ `rowOrderStats(X, cols, rows)` = rowOrderStats(X, rows = cols, cols = rows, which = which, na.rm = FALSE),
+ `rowOrderStats(X[cols, rows])` = rowOrderStats(X[cols, rows], which = which, na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 0.072105 | 0.0727140 | 0.0733995 | 0.0729070 | 0.0732475 | 0.089554 |
2 | colOrderStats(X, rows, cols) | 0.077293 | 0.0777605 | 0.0786936 | 0.0779940 | 0.0782940 | 0.138389 |
3 | colOrderStats(X[rows, cols]) | 0.088435 | 0.0889675 | 0.0895629 | 0.0891695 | 0.0894280 | 0.103972 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colOrderStats(X, rows, cols) | 1.071951 | 1.069402 | 1.072127 | 1.069774 | 1.068896 | 1.545313 |
3 | colOrderStats(X[rows, cols]) | 1.226475 | 1.223526 | 1.220212 | 1.223058 | 1.220902 | 1.160998 |
Table: Benchmarking of rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 0.074353 | 0.0748150 | 0.0756492 | 0.0751230 | 0.0754320 | 0.114917 |
2 | rowOrderStats(X, cols, rows) | 0.078350 | 0.0789755 | 0.0794441 | 0.0792230 | 0.0795345 | 0.088957 |
3 | rowOrderStats(X[cols, rows]) | 0.083684 | 0.0844845 | 0.0851351 | 0.0848625 | 0.0852920 | 0.092688 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowOrderStats(X, cols, rows) | 1.053757 | 1.055611 | 1.050165 | 1.054577 | 1.054387 | 0.7740978 |
3 | rowOrderStats(X[cols, rows]) | 1.125496 | 1.129245 | 1.125394 | 1.129647 | 1.130714 | 0.8065647 |
Figure: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on double+1000x10 data as well as rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 72.105 | 72.714 | 73.39946 | 72.907 | 73.2475 | 89.554 |
2 | rowOrderStats_X_S | 74.353 | 74.815 | 75.64915 | 75.123 | 75.4320 | 114.917 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats_X_S | 1.031177 | 1.028894 | 1.03065 | 1.030395 | 1.029824 | 1.283215 |
Figure: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3159935 168.8 5709258 305.0 5709258 305.0
Vcells 5961669 45.5 22267496 169.9 56666022 432.4
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats_X_S = colOrderStats(X_S, which = which, na.rm = FALSE),
+ `colOrderStats(X, rows, cols)` = colOrderStats(X, rows = rows, cols = cols, which = which, na.rm = FALSE),
+ `colOrderStats(X[rows, cols])` = colOrderStats(X[rows, cols], which = which, na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3159925 168.8 5709258 305.0 5709258 305.0
Vcells 5971746 45.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowOrderStats_X_S = rowOrderStats(X_S, which = which, na.rm = FALSE),
+ `rowOrderStats(X, cols, rows)` = rowOrderStats(X, rows = cols, cols = rows, which = which, na.rm = FALSE),
+ `rowOrderStats(X[cols, rows])` = rowOrderStats(X[cols, rows], which = which, na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 0.066852 | 0.067833 | 0.0685552 | 0.0683925 | 0.0691210 | 0.073122 |
2 | colOrderStats(X, rows, cols) | 0.072981 | 0.074263 | 0.0750012 | 0.0747020 | 0.0751530 | 0.100147 |
3 | colOrderStats(X[rows, cols]) | 0.077055 | 0.077892 | 0.0785175 | 0.0782685 | 0.0788555 | 0.084143 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colOrderStats(X, rows, cols) | 1.091680 | 1.094792 | 1.094025 | 1.092254 | 1.087267 | 1.369588 |
3 | colOrderStats(X[rows, cols]) | 1.152621 | 1.148291 | 1.145317 | 1.144402 | 1.140833 | 1.150721 |
Table: Benchmarking of rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 0.067635 | 0.0685505 | 0.0697352 | 0.0692105 | 0.0698205 | 0.109806 |
2 | rowOrderStats(X, cols, rows) | 0.072822 | 0.0740610 | 0.0746043 | 0.0746665 | 0.0749840 | 0.077564 |
3 | rowOrderStats(X[cols, rows]) | 0.075961 | 0.0768790 | 0.0780130 | 0.0774315 | 0.0779910 | 0.104113 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowOrderStats(X, cols, rows) | 1.076691 | 1.080386 | 1.069824 | 1.078832 | 1.073954 | 0.7063731 |
3 | rowOrderStats(X[cols, rows]) | 1.123102 | 1.121494 | 1.118705 | 1.118783 | 1.117021 | 0.9481540 |
Figure: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on double+10x1000 data as well as rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 66.852 | 67.8330 | 68.55525 | 68.3925 | 69.1210 | 73.122 |
2 | rowOrderStats_X_S | 67.635 | 68.5505 | 69.73516 | 69.2105 | 69.8205 | 109.806 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.00000 | 1.000000 |
2 | rowOrderStats_X_S | 1.011712 | 1.010577 | 1.017211 | 1.01196 | 1.01012 | 1.501682 |
Figure: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3160134 168.8 5709258 305.0 5709258 305.0
Vcells 6007240 45.9 22267496 169.9 56666022 432.4
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats_X_S = colOrderStats(X_S, which = which, na.rm = FALSE),
+ `colOrderStats(X, rows, cols)` = colOrderStats(X, rows = rows, cols = cols, which = which, na.rm = FALSE),
+ `colOrderStats(X[rows, cols])` = colOrderStats(X[rows, cols], which = which, na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3160124 168.8 5709258 305.0 5709258 305.0
Vcells 6107317 46.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowOrderStats_X_S = rowOrderStats(X_S, which = which, na.rm = FALSE),
+ `rowOrderStats(X, cols, rows)` = rowOrderStats(X, rows = cols, cols = rows, which = which, na.rm = FALSE),
+ `rowOrderStats(X[cols, rows])` = rowOrderStats(X[cols, rows], which = which, na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 0.770434 | 0.7737435 | 0.7862686 | 0.7747015 | 0.7772540 | 1.049748 |
2 | colOrderStats(X, rows, cols) | 0.813697 | 0.8165185 | 0.8245568 | 0.8181240 | 0.8207455 | 1.011181 |
3 | colOrderStats(X[rows, cols]) | 0.920819 | 0.9243660 | 0.9314293 | 0.9267720 | 0.9303025 | 1.184210 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colOrderStats(X, rows, cols) | 1.056154 | 1.055283 | 1.048696 | 1.056051 | 1.055955 | 0.9632607 |
3 | colOrderStats(X[rows, cols]) | 1.195195 | 1.194667 | 1.184620 | 1.196296 | 1.196909 | 1.1280898 |
Table: Benchmarking of rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 0.778297 | 0.7809520 | 0.7886945 | 0.7828105 | 0.7874945 | 0.930093 |
2 | rowOrderStats(X, cols, rows) | 0.830279 | 0.8324975 | 0.8447693 | 0.8343380 | 0.8397160 | 1.433900 |
3 | rowOrderStats(X[cols, rows]) | 0.848244 | 0.8535030 | 0.8672251 | 0.8564900 | 0.8610175 | 1.026660 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats(X, cols, rows) | 1.066789 | 1.066003 | 1.071098 | 1.065824 | 1.066313 | 1.541674 |
3 | rowOrderStats(X[cols, rows]) | 1.089872 | 1.092901 | 1.099570 | 1.094122 | 1.093363 | 1.103825 |
Figure: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on double+100x1000 data as well as rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 770.434 | 773.7435 | 786.2686 | 774.7015 | 777.2540 | 1049.748 |
2 | rowOrderStats_X_S | 778.297 | 780.9520 | 788.6945 | 782.8105 | 787.4945 | 930.093 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowOrderStats_X_S | 1.010206 | 1.009316 | 1.003085 | 1.010467 | 1.013175 | 0.8860155 |
Figure: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3160350 168.8 5709258 305.0 5709258 305.0
Vcells 6007387 45.9 22267496 169.9 56666022 432.4
> probs <- 0.3
> which <- round(probs * nrow(X))
> colStats <- microbenchmark(colOrderStats_X_S = colOrderStats(X_S, which = which, na.rm = FALSE),
+ `colOrderStats(X, rows, cols)` = colOrderStats(X, rows = rows, cols = cols, which = which, na.rm = FALSE),
+ `colOrderStats(X[rows, cols])` = colOrderStats(X[rows, cols], which = which, na.rm = FALSE),
+ unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3160340 168.8 5709258 305.0 5709258 305.0
Vcells 6107464 46.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowOrderStats_X_S = rowOrderStats(X_S, which = which, na.rm = FALSE),
+ `rowOrderStats(X, cols, rows)` = rowOrderStats(X, rows = cols, cols = rows, which = which, na.rm = FALSE),
+ `rowOrderStats(X[cols, rows])` = rowOrderStats(X[cols, rows], which = which, na.rm = FALSE),
+ unit = "ms")
Table: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 0.758792 | 0.7602540 | 0.7652907 | 0.7610550 | 0.7629300 | 0.877707 |
2 | colOrderStats(X, rows, cols) | 0.799374 | 0.8007675 | 0.8056904 | 0.8018910 | 0.8032150 | 0.921177 |
3 | colOrderStats(X[rows, cols]) | 0.828195 | 0.8329110 | 0.8397628 | 0.8339365 | 0.8365295 | 1.022333 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colOrderStats(X, rows, cols) | 1.053482 | 1.053289 | 1.052790 | 1.053657 | 1.052803 | 1.049527 |
3 | colOrderStats(X[rows, cols]) | 1.091465 | 1.095569 | 1.097312 | 1.095764 | 1.096469 | 1.164777 |
Table: Benchmarking of rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 0.781644 | 0.7833675 | 0.7925041 | 0.7850245 | 0.7877940 | 0.915818 |
2 | rowOrderStats(X, cols, rows) | 0.826801 | 0.8288840 | 0.8411113 | 0.8307185 | 0.8351465 | 1.166112 |
3 | rowOrderStats(X[cols, rows]) | 0.859268 | 0.8636510 | 0.8827061 | 0.8655500 | 0.8711405 | 1.611106 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowOrderStats_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowOrderStats(X, cols, rows) | 1.057772 | 1.058104 | 1.061334 | 1.058207 | 1.060108 | 1.273301 |
3 | rowOrderStats(X[cols, rows]) | 1.099309 | 1.102485 | 1.113819 | 1.102577 | 1.105797 | 1.759199 |
Figure: Benchmarking of colOrderStats_X_S(), colOrderStats(X, rows, cols)() and colOrderStats(X[rows, cols])() on double+1000x100 data as well as rowOrderStats_X_S(), rowOrderStats(X, cols, rows)() and rowOrderStats(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 758.792 | 760.2540 | 765.2907 | 761.0550 | 762.930 | 877.707 |
2 | rowOrderStats_X_S | 781.644 | 783.3675 | 792.5041 | 785.0245 | 787.794 | 915.818 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colOrderStats_X_S | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.00000 | 1.000000 |
2 | rowOrderStats_X_S | 1.030116 | 1.030402 | 1.03556 | 1.031495 | 1.03259 | 1.043421 |
Figure: Benchmarking of colOrderStats_X_S() and rowOrderStats_X_S() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 24.72 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowOrderStats_subset')
Copyright Dongcan Jiang. Last updated on 2019-09-10 20:46:42 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>