-
Notifications
You must be signed in to change notification settings - Fork 34
colRowWeightedMeans
matrixStats: Benchmark report
This report benchmark the performance of colWeightedMeans() and rowWeightedMeans() against alternative methods.
- apply() + weighted.mean()
> rmatrix <- function(nrow, ncol, mode = c("logical",
+ "double", "integer", "index"), range = c(-100, +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ }
+ else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ }
+ else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1,
+ ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10,
+ ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1,
+ ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100,
+ ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x),
+ collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "double")
> X <- data[["10x10"]]
> w <- runif(nrow(X))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1685324 90.1 2637877 140.9 2637877 140.9
Vcells 1709204 13.1 3344261 25.6 46816319 357.2
> colStats <- microbenchmark(colWeightedMeans = colWeightedMeans(X,
+ w = w, na.rm = FALSE), `apply+weigthed.mean` = apply(X, MARGIN = 2,
+ FUN = weighted.mean, w = w, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1683908 90.0 2637877 140.9 2637877 140.9
Vcells 1704230 13.1 3344261 25.6 46816319 357.2
> rowStats <- microbenchmark(rowWeightedMeans = rowWeightedMeans(X,
+ w = w, na.rm = FALSE), `apply+weigthed.mean` = apply(X, MARGIN = 1,
+ FUN = weighted.mean, w = w, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colWeightedMeans() and apply+weigthed.mean() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 0.037502 | 0.0388740 | 0.0444442 | 0.0401330 | 0.0409645 | 0.486712 |
apply+weigthed.mean | 0.279034 | 0.2836725 | 0.2902293 | 0.2855485 | 0.2878485 | 0.660192 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.00000 | 1.00000 | 1.0000 | 1.000000 | 1.000000 | 1.000000 |
apply+weigthed.mean | 7.44051 | 7.29723 | 6.5302 | 7.115055 | 7.026779 | 1.356433 |
Table: Benchmarking of rowWeightedMeans() and apply+weigthed.mean() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowWeightedMeans | 0.078984 | 0.0812575 | 0.0900678 | 0.0832145 | 0.0846085 | 0.762360 |
apply+weigthed.mean | 0.279135 | 0.2834985 | 0.2877658 | 0.2858550 | 0.2890780 | 0.402149 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowWeightedMeans | 1.00000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
apply+weigthed.mean | 3.53407 | 3.48889 | 3.194989 | 3.435159 | 3.416654 | 0.5275054 |
Figure: Benchmarking of colWeightedMeans() and apply+weigthed.mean() on 10x10 data as well as rowWeightedMeans() and apply+weigthed.mean() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colWeightedMeans() and rowWeightedMeans() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 37.502 | 38.8740 | 44.44416 | 40.1330 | 40.9645 | 486.712 |
rowWeightedMeans | 78.984 | 81.2575 | 90.06785 | 83.2145 | 84.6085 | 762.360 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.00000 | 1.000000 |
rowWeightedMeans | 2.106128 | 2.090279 | 2.02654 | 2.073468 | 2.06541 | 1.566347 |
Figure: Benchmarking of colWeightedMeans() and rowWeightedMeans() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["100x100"]]
> w <- runif(nrow(X))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1684461 90.0 2637877 140.9 2637877 140.9
Vcells 1706199 13.1 3344261 25.6 46816319 357.2
> colStats <- microbenchmark(colWeightedMeans = colWeightedMeans(X,
+ w = w, na.rm = FALSE), `apply+weigthed.mean` = apply(X, MARGIN = 2,
+ FUN = weighted.mean, w = w, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1684455 90.0 2637877 140.9 2637877 140.9
Vcells 1716242 13.1 3344261 25.6 46816319 357.2
> rowStats <- microbenchmark(rowWeightedMeans = rowWeightedMeans(X,
+ w = w, na.rm = FALSE), `apply+weigthed.mean` = apply(X, MARGIN = 1,
+ FUN = weighted.mean, w = w, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colWeightedMeans() and apply+weigthed.mean() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 0.234753 | 0.240696 | 0.2448626 | 0.2426665 | 0.2451275 | 0.30900 |
apply+weigthed.mean | 3.397504 | 3.426096 | 3.7220759 | 3.4367345 | 3.4508525 | 10.56193 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
apply+weigthed.mean | 14.47268 | 14.23412 | 15.20067 | 14.16238 | 14.07779 | 34.18101 |
Table: Benchmarking of rowWeightedMeans() and apply+weigthed.mean() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowWeightedMeans | 0.411241 | 0.415599 | 0.4947316 | 0.4190985 | 0.4286955 | 7.25107 |
apply+weigthed.mean | 3.409846 | 3.426607 | 3.6565061 | 3.4353470 | 3.4518560 | 10.54385 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowWeightedMeans | 1.0000 | 1.000000 | 1.000000 | 1.000000 | 1.000 | 1.00000 |
apply+weigthed.mean | 8.2916 | 8.244985 | 7.390889 | 8.196992 | 8.052 | 1.45411 |
Figure: Benchmarking of colWeightedMeans() and apply+weigthed.mean() on 100x100 data as well as rowWeightedMeans() and apply+weigthed.mean() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colWeightedMeans() and rowWeightedMeans() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 234.753 | 240.696 | 244.8626 | 242.6665 | 245.1275 | 309.00 |
rowWeightedMeans | 411.241 | 415.599 | 494.7316 | 419.0985 | 428.6955 | 7251.07 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
rowWeightedMeans | 1.751803 | 1.726655 | 2.020445 | 1.727055 | 1.748867 | 23.46625 |
Figure: Benchmarking of colWeightedMeans() and rowWeightedMeans() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["1000x10"]]
> w <- runif(nrow(X))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1684494 90.0 2637877 140.9 2637877 140.9
Vcells 1707333 13.1 3344261 25.6 46816319 357.2
> colStats <- microbenchmark(colWeightedMeans = colWeightedMeans(X,
+ w = w, na.rm = FALSE), `apply+weigthed.mean` = apply(X, MARGIN = 2,
+ FUN = weighted.mean, w = w, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1684488 90.0 2637877 140.9 2637877 140.9
Vcells 1717376 13.2 3344261 25.6 46816319 357.2
> rowStats <- microbenchmark(rowWeightedMeans = rowWeightedMeans(X,
+ w = w, na.rm = FALSE), `apply+weigthed.mean` = apply(X, MARGIN = 1,
+ FUN = weighted.mean, w = w, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colWeightedMeans() and apply+weigthed.mean() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 0.354732 | 0.384952 | 0.4614925 | 0.4144925 | 0.4433215 | 5.168358 |
apply+weigthed.mean | 1.350711 | 1.372848 | 1.5383052 | 1.3961560 | 1.4192780 | 6.129751 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
apply+weigthed.mean | 3.807694 | 3.566284 | 3.333326 | 3.368351 | 3.201464 | 1.186015 |
Table: Benchmarking of rowWeightedMeans() and apply+weigthed.mean() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowWeightedMeans | 0.529684 | 0.5359695 | 0.6477361 | 0.5411305 | 0.5466305 | 5.698665 |
apply+weigthed.mean | 1.358664 | 1.3779810 | 1.4929919 | 1.4011190 | 1.4105980 | 6.131218 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowWeightedMeans | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
apply+weigthed.mean | 2.565046 | 2.571006 | 2.304939 | 2.589244 | 2.580533 | 1.075904 |
Figure: Benchmarking of colWeightedMeans() and apply+weigthed.mean() on 1000x10 data as well as rowWeightedMeans() and apply+weigthed.mean() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colWeightedMeans() and rowWeightedMeans() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 354.732 | 384.9520 | 461.4925 | 414.4925 | 443.3215 | 5168.358 |
rowWeightedMeans | 529.684 | 535.9695 | 647.7361 | 541.1305 | 546.6305 | 5698.665 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
rowWeightedMeans | 1.493195 | 1.392302 | 1.403568 | 1.305525 | 1.233034 | 1.102607 |
Figure: Benchmarking of colWeightedMeans() and rowWeightedMeans() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["10x1000"]]
> w <- runif(nrow(X))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1684535 90.0 2637877 140.9 2637877 140.9
Vcells 1706993 13.1 3344261 25.6 46816319 357.2
> colStats <- microbenchmark(colWeightedMeans = colWeightedMeans(X,
+ w = w, na.rm = FALSE), `apply+weigthed.mean` = apply(X, MARGIN = 2,
+ FUN = weighted.mean, w = w, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1684523 90.0 2637877 140.9 2637877 140.9
Vcells 1717026 13.1 3344261 25.6 46816319 357.2
> rowStats <- microbenchmark(rowWeightedMeans = rowWeightedMeans(X,
+ w = w, na.rm = FALSE), `apply+weigthed.mean` = apply(X, MARGIN = 1,
+ FUN = weighted.mean, w = w, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colWeightedMeans() and apply+weigthed.mean() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 0.232424 | 0.2505285 | 0.2693935 | 0.2650665 | 0.2845045 | 0.336411 |
apply+weigthed.mean | 22.826529 | 22.9997595 | 23.4901163 | 23.1119560 | 23.2810565 | 28.134061 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
apply+weigthed.mean | 98.21072 | 91.80496 | 87.19631 | 87.19305 | 81.83019 | 83.63003 |
Table: Benchmarking of rowWeightedMeans() and apply+weigthed.mean() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowWeightedMeans | 0.401787 | 0.407845 | 0.4465477 | 0.441786 | 0.488857 | 0.537061 |
apply+weigthed.mean | 22.916100 | 23.055289 | 23.5189257 | 23.129144 | 23.276941 | 28.187177 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowWeightedMeans | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
apply+weigthed.mean | 57.03544 | 56.52954 | 52.66834 | 52.35373 | 47.61503 | 52.48413 |
Figure: Benchmarking of colWeightedMeans() and apply+weigthed.mean() on 10x1000 data as well as rowWeightedMeans() and apply+weigthed.mean() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colWeightedMeans() and rowWeightedMeans() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 232.424 | 250.5285 | 269.3935 | 265.0665 | 284.5045 | 336.411 |
rowWeightedMeans | 401.787 | 407.8450 | 446.5477 | 441.7860 | 488.8570 | 537.061 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
rowWeightedMeans | 1.728681 | 1.627938 | 1.657604 | 1.666699 | 1.718275 | 1.596443 |
Figure: Benchmarking of colWeightedMeans() and rowWeightedMeans() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["100x1000"]]
> w <- runif(nrow(X))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1684565 90.0 2637877 140.9 2637877 140.9
Vcells 1707460 13.1 3344261 25.6 46816319 357.2
> colStats <- microbenchmark(colWeightedMeans = colWeightedMeans(X,
+ w = w, na.rm = FALSE), `apply+weigthed.mean` = apply(X, MARGIN = 2,
+ FUN = weighted.mean, w = w, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1684559 90.0 2637877 140.9 2637877 140.9
Vcells 1807503 13.8 3344261 25.6 46816319 357.2
> rowStats <- microbenchmark(rowWeightedMeans = rowWeightedMeans(X,
+ w = w, na.rm = FALSE), `apply+weigthed.mean` = apply(X, MARGIN = 1,
+ FUN = weighted.mean, w = w, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colWeightedMeans() and apply+weigthed.mean() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.96248 | 2.004568 | 5.188455 | 2.038473 | 2.063834 | 285.44672 |
apply+weigthed.mean | 33.65308 | 34.192895 | 37.962480 | 40.347068 | 40.905260 | 41.85109 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.00000 | 1.00000 | 1.000000 | 1.00000 | 1.00000 | 1.0000000 |
apply+weigthed.mean | 17.14824 | 17.05749 | 7.316722 | 19.79279 | 19.82003 | 0.1466161 |
Table: Benchmarking of rowWeightedMeans() and apply+weigthed.mean() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowWeightedMeans | 3.388423 | 3.405931 | 4.227947 | 3.512784 | 3.532478 | 10.84297 |
apply+weigthed.mean | 34.055173 | 35.467314 | 41.433275 | 40.285399 | 42.163057 | 319.03177 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowWeightedMeans | 1.00000 | 1.0000 | 1.000000 | 1.00000 | 1.00000 | 1.00000 |
apply+weigthed.mean | 10.05045 | 10.4134 | 9.799856 | 11.46822 | 11.93583 | 29.42291 |
Figure: Benchmarking of colWeightedMeans() and apply+weigthed.mean() on 100x1000 data as well as rowWeightedMeans() and apply+weigthed.mean() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colWeightedMeans() and rowWeightedMeans() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.962480 | 2.004568 | 5.188455 | 2.038473 | 2.063834 | 285.44672 |
rowWeightedMeans | 3.388423 | 3.405931 | 4.227947 | 3.512784 | 3.532478 | 10.84297 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
rowWeightedMeans | 1.726603 | 1.699085 | 0.814876 | 1.723243 | 1.711609 | 0.037986 |
Figure: Benchmarking of colWeightedMeans() and rowWeightedMeans() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["1000x100"]]
> w <- runif(nrow(X))
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1684608 90.0 2637877 140.9 2637877 140.9
Vcells 1708915 13.1 3344261 25.6 46816319 357.2
> colStats <- microbenchmark(colWeightedMeans = colWeightedMeans(X,
+ w = w, na.rm = FALSE), `apply+weigthed.mean` = apply(X, MARGIN = 2,
+ FUN = weighted.mean, w = w, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 1684596 90.0 2637877 140.9 2637877 140.9
Vcells 1808948 13.9 3344261 25.6 46816319 357.2
> rowStats <- microbenchmark(rowWeightedMeans = rowWeightedMeans(X,
+ w = w, na.rm = FALSE), `apply+weigthed.mean` = apply(X, MARGIN = 1,
+ FUN = weighted.mean, w = w, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colWeightedMeans() and apply+weigthed.mean() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 2.373089 | 2.570216 | 3.185409 | 2.648289 | 2.74999 | 7.402211 |
apply+weigthed.mean | 13.268391 | 13.467519 | 21.270577 | 13.640463 | 18.07039 | 295.995929 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.00000 | 1.00000 | 1.000000 | 1.00000 | 1.000000 | 1.0000 |
apply+weigthed.mean | 5.59119 | 5.23984 | 6.677503 | 5.15067 | 6.571076 | 39.9875 |
Table: Benchmarking of rowWeightedMeans() and apply+weigthed.mean() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowWeightedMeans | 3.516543 | 3.538791 | 4.137653 | 3.617999 | 3.643841 | 8.818421 |
apply+weigthed.mean | 13.661668 | 13.903900 | 19.079959 | 18.181791 | 18.508519 | 296.375817 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowWeightedMeans | 1.000000 | 1.000000 | 1.0000 | 1.000000 | 1.000000 | 1.00000 |
apply+weigthed.mean | 3.884971 | 3.928997 | 4.6113 | 5.025371 | 5.079398 | 33.60872 |
Figure: Benchmarking of colWeightedMeans() and apply+weigthed.mean() on 1000x100 data as well as rowWeightedMeans() and apply+weigthed.mean() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colWeightedMeans() and rowWeightedMeans() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 2.373089 | 2.570216 | 3.185409 | 2.648289 | 2.749990 | 7.402211 |
rowWeightedMeans | 3.516543 | 3.538791 | 4.137653 | 3.617999 | 3.643841 | 8.818421 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colWeightedMeans | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
rowWeightedMeans | 1.481842 | 1.376846 | 1.298939 | 1.366165 | 1.325038 | 1.191323 |
Figure: Benchmarking of colWeightedMeans() and rowWeightedMeans() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
R version 3.2.2 Patched (2015-10-26 r69575)
Platform: x86_64-pc-linux-gnu (64-bit)
locale:
[1] C
attached base packages:
[1] methods stats graphics grDevices utils datasets base
other attached packages:
[1] markdown_0.7.7 microbenchmark_1.4-2 matrixStats_0.15.0
[4] ggplot2_1.0.1 knitr_1.11 R.devices_2.13.1
[7] R.utils_2.1.0 R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_0.12.1 plyr_1.8.3 highr_0.5.1
[4] base64enc_0.1-3 tools_3.2.2 digest_0.6.8
[7] annotate_1.48.0 RSQLite_1.0.0 gtable_0.1.2
[10] R.cache_0.11.0 DBI_0.3.1 parallel_3.2.2
[13] proto_0.3-10 R.rsp_0.20.0 genefilter_1.52.0
[16] stringr_1.0.0 S4Vectors_0.8.0 IRanges_2.4.1
[19] stats4_3.2.2 grid_3.2.2 Biobase_2.30.0
[22] AnnotationDbi_1.32.0 survival_2.38-3 XML_3.98-1.3
[25] reshape2_1.4.1 magrittr_1.5 splines_3.2.2
[28] scales_0.3.0 MASS_7.3-44 BiocGenerics_0.16.0
[31] mime_0.4 colorspace_1.2-6 xtable_1.7-4
[34] labeling_0.3 stringi_1.0-1 munsell_0.4.2
Total processing time was 33.86 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colWeightedMeans')
Copyright Henrik Bengtsson. Last updated on 2015-10-27 11:58:30 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>