-
Notifications
You must be signed in to change notification settings - Fork 34
colRowMedians
matrixStats: Benchmark report
This report benchmark the performance of colMedians() and rowMedians() against alternative methods.
- apply() + median()
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3148394 168.2 5709258 305.0 5709258 305.0
Vcells 6133517 46.8 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3146917 168.1 5709258 305.0 5709258 305.0
Vcells 6129255 46.8 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 0.001423 | 0.0016740 | 0.0024066 | 0.0021500 | 0.002920 | 0.013546 |
2 | apply+median | 0.248046 | 0.2501115 | 0.2544108 | 0.2516985 | 0.253451 | 0.436424 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000 | 1.0000 | 1.0000 | 1.0000 | 1.00000 | 1.00000 |
2 | apply+median | 174.312 | 149.4095 | 105.7134 | 117.0691 | 86.79829 | 32.21792 |
Table: Benchmarking of rowMedians() and apply+median() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 0.001406 | 0.0017075 | 0.0025164 | 0.0027120 | 0.002945 | 0.012756 |
2 | apply+median | 0.246852 | 0.2505395 | 0.2546976 | 0.2519685 | 0.253652 | 0.450944 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.0000 | 1.0000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+median | 175.5704 | 146.7288 | 101.2151 | 92.90874 | 86.12971 | 35.35152 |
Figure: Benchmarking of colMedians() and apply+median() on integer+10x10 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMedians() and rowMedians() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.423 | 1.6740 | 2.40661 | 2.150 | 2.920 | 13.546 |
2 | rowMedians | 1.406 | 1.7075 | 2.51640 | 2.712 | 2.945 | 12.756 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.0000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowMedians | 0.9880534 | 1.020012 | 1.04562 | 1.261395 | 1.008562 | 0.9416802 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3145475 168.0 5709258 305.0 5709258 305.0
Vcells 5745751 43.9 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3145466 168.0 5709258 305.0 5709258 305.0
Vcells 5750789 43.9 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 0.109616 | 0.112410 | 0.1167811 | 0.115310 | 0.116568 | 0.161789 |
2 | apply+median | 2.574255 | 2.610474 | 2.7723719 | 2.637329 | 2.728289 | 10.863687 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+median | 23.4843 | 23.22279 | 23.73991 | 22.87164 | 23.40512 | 67.14725 |
Table: Benchmarking of rowMedians() and apply+median() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 0.109995 | 0.111854 | 0.1175396 | 0.115371 | 0.116633 | 0.206936 |
2 | apply+median | 2.582868 | 2.616979 | 2.7824168 | 2.657897 | 2.735140 | 10.650263 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+median | 23.48169 | 23.39638 | 23.67216 | 23.03782 | 23.45082 | 51.46646 |
Figure: Benchmarking of colMedians() and apply+median() on integer+100x100 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMedians() and rowMedians() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 109.616 | 112.410 | 116.7811 | 115.310 | 116.568 | 161.789 |
2 | rowMedians | 109.995 | 111.854 | 117.5396 | 115.371 | 116.633 | 206.936 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMedians | 1.003457 | 0.9950538 | 1.006496 | 1.000529 | 1.000558 | 1.279049 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3146205 168.1 5709258 305.0 5709258 305.0
Vcells 5749258 43.9 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3146196 168.1 5709258 305.0 5709258 305.0
Vcells 5754296 44.0 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 0.098588 | 0.1006090 | 0.1023026 | 0.102130 | 0.1031450 | 0.139008 |
2 | apply+median | 0.443335 | 0.4537355 | 0.4630561 | 0.460301 | 0.4701085 | 0.610789 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+median | 4.496846 | 4.50989 | 4.526339 | 4.507011 | 4.557744 | 4.393913 |
Table: Benchmarking of rowMedians() and apply+median() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 0.099118 | 0.1013455 | 0.1033351 | 0.1034135 | 0.104261 | 0.143447 |
2 | apply+median | 0.445403 | 0.4543925 | 0.4675050 | 0.4656450 | 0.474332 | 0.610581 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+median | 4.493664 | 4.483598 | 4.524166 | 4.502749 | 4.549467 | 4.256492 |
Figure: Benchmarking of colMedians() and apply+median() on integer+1000x10 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMedians() and rowMedians() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 98.588 | 100.6090 | 102.3026 | 102.1300 | 103.145 | 139.008 |
2 | rowMedians | 99.118 | 101.3455 | 103.3351 | 103.4135 | 104.261 | 143.447 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | rowMedians | 1.005376 | 1.00732 | 1.010093 | 1.012567 | 1.01082 | 1.031933 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3146394 168.1 5709258 305.0 5709258 305.0
Vcells 5749938 43.9 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3146385 168.1 5709258 305.0 5709258 305.0
Vcells 5754976 44.0 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 0.117463 | 0.1231185 | 0.1348281 | 0.137208 | 0.1425285 | 0.174475 |
2 | apply+median | 23.386243 | 23.8971810 | 25.5755624 | 24.488757 | 25.7706055 | 38.426301 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.0000 | 1.000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
2 | apply+median | 199.0945 | 194.099 | 189.6902 | 178.4791 | 180.8102 | 220.2396 |
Table: Benchmarking of rowMedians() and apply+median() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 0.118322 | 0.1241225 | 0.139761 | 0.1424645 | 0.1482465 | 0.181293 |
2 | apply+median | 23.323961 | 23.8218750 | 25.736911 | 24.6920935 | 25.9868975 | 42.304547 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.0000 | 1.0000 | 1.0000 | 1.000 | 1.0000 | 1.000 |
2 | apply+median | 197.1228 | 191.9223 | 184.1495 | 173.321 | 175.2952 | 233.349 |
Figure: Benchmarking of colMedians() and apply+median() on integer+10x1000 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMedians() and rowMedians() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 117.463 | 123.1185 | 134.8281 | 137.2080 | 142.5285 | 174.475 |
2 | rowMedians | 118.322 | 124.1225 | 139.7610 | 142.4645 | 148.2465 | 181.293 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | rowMedians | 1.007313 | 1.008155 | 1.036586 | 1.03831 | 1.040118 | 1.039077 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3146575 168.1 5709258 305.0 5709258 305.0
Vcells 5750419 43.9 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3146566 168.1 5709258 305.0 5709258 305.0
Vcells 5800457 44.3 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.083893 | 1.096217 | 1.135232 | 1.10672 | 1.13207 | 1.424282 |
2 | apply+median | 25.685347 | 26.059254 | 28.176103 | 26.70994 | 27.97560 | 40.550065 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+median | 23.69731 | 23.77198 | 24.81969 | 24.13432 | 24.71191 | 28.47053 |
Table: Benchmarking of rowMedians() and apply+median() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.098262 | 1.131919 | 1.188056 | 1.17516 | 1.187909 | 1.531868 |
2 | apply+median | 25.894567 | 26.398205 | 28.532177 | 27.38014 | 28.505834 | 39.601564 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+median | 23.57777 | 23.32163 | 24.01586 | 23.29908 | 23.99665 | 25.85181 |
Figure: Benchmarking of colMedians() and apply+median() on integer+100x1000 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMedians() and rowMedians() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.083893 | 1.096217 | 1.135232 | 1.10672 | 1.132070 | 1.424282 |
2 | rowMedians | 1.098262 | 1.131919 | 1.188056 | 1.17516 | 1.187909 | 1.531868 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | rowMedians | 1.013257 | 1.032569 | 1.046531 | 1.06184 | 1.049325 | 1.075537 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3146771 168.1 5709258 305.0 5709258 305.0
Vcells 5750997 43.9 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3146762 168.1 5709258 305.0 5709258 305.0
Vcells 5801035 44.3 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 0.954607 | 0.9608395 | 0.9816954 | 0.968706 | 0.984626 | 1.169861 |
2 | apply+median | 4.170526 | 4.2111795 | 4.3670111 | 4.244028 | 4.313897 | 12.638877 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
2 | apply+median | 4.368841 | 4.382813 | 4.448438 | 4.381131 | 4.381254 | 10.80374 |
Table: Benchmarking of rowMedians() and apply+median() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 0.978798 | 0.9875265 | 1.001061 | 0.992718 | 1.001716 | 1.176836 |
2 | apply+median | 4.191627 | 4.2368835 | 4.425128 | 4.274832 | 4.343601 | 13.118333 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.000000 | 1.0000 | 1.000000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+median | 4.282423 | 4.2904 | 4.420437 | 4.30619 | 4.33616 | 11.14712 |
Figure: Benchmarking of colMedians() and apply+median() on integer+1000x100 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMedians() and rowMedians() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 954.607 | 960.8395 | 981.6954 | 968.706 | 984.626 | 1169.861 |
2 | rowMedians | 978.798 | 987.5265 | 1001.0613 | 992.718 | 1001.716 | 1176.836 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMedians | 1.025341 | 1.027775 | 1.019727 | 1.024788 | 1.017357 | 1.005962 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3146982 168.1 5709258 305.0 5709258 305.0
Vcells 5867406 44.8 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3146961 168.1 5709258 305.0 5709258 305.0
Vcells 5867524 44.8 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 0.002052 | 0.002413 | 0.0033440 | 0.0028420 | 0.0040460 | 0.013901 |
2 | apply+median | 0.253187 | 0.255719 | 0.2623944 | 0.2575165 | 0.2596935 | 0.436757 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.0000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+median | 123.3855 | 105.9755 | 78.46652 | 90.61101 | 64.18524 | 31.41911 |
Table: Benchmarking of rowMedians() and apply+median() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 0.002051 | 0.0025470 | 0.0035260 | 0.0038125 | 0.004020 | 0.013935 |
2 | apply+median | 0.252701 | 0.2554865 | 0.2592114 | 0.2568135 | 0.258696 | 0.434011 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.0000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+median | 123.2087 | 100.3088 | 73.51491 | 67.36092 | 64.35224 | 31.14539 |
Figure: Benchmarking of colMedians() and apply+median() on double+10x10 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMedians() and rowMedians() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 2.052 | 2.413 | 3.34403 | 2.8420 | 4.046 | 13.901 |
2 | rowMedians | 2.051 | 2.547 | 3.52597 | 3.8125 | 4.020 | 13.935 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.000000 |
2 | rowMedians | 0.9995127 | 1.055532 | 1.054407 | 1.341485 | 0.9935739 | 1.002446 |
Figure: Benchmarking of colMedians() and rowMedians() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3147157 168.1 5709258 305.0 5709258 305.0
Vcells 5867511 44.8 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3147148 168.1 5709258 305.0 5709258 305.0
Vcells 5877549 44.9 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 0.175608 | 0.1790945 | 0.1883326 | 0.182464 | 0.190529 | 0.270138 |
2 | apply+median | 2.728487 | 2.7579685 | 2.9788384 | 2.830185 | 2.951084 | 12.306626 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.00000 | 1.00000 | 1.0000 | 1.00000 | 1.0000 | 1.00000 |
2 | apply+median | 15.53737 | 15.39952 | 15.8169 | 15.51093 | 15.4889 | 45.55681 |
Table: Benchmarking of rowMedians() and apply+median() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 0.175110 | 0.177632 | 0.1931822 | 0.180092 | 0.196236 | 0.27076 |
2 | apply+median | 2.687166 | 2.725458 | 3.1147334 | 2.814103 | 3.208063 | 12.61086 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+median | 15.34559 | 15.34328 | 16.12329 | 15.62592 | 16.34798 | 46.57579 |
Figure: Benchmarking of colMedians() and apply+median() on double+100x100 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMedians() and rowMedians() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowMedians | 175.110 | 177.6320 | 193.1822 | 180.092 | 196.236 | 270.760 |
1 | colMedians | 175.608 | 179.0945 | 188.3326 | 182.464 | 190.529 | 270.138 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 | 1.0000000 |
1 | colMedians | 1.002844 | 1.008233 | 0.974896 | 1.013171 | 0.9709177 | 0.9977028 |
Figure: Benchmarking of colMedians() and rowMedians() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3147347 168.1 5709258 305.0 5709258 305.0
Vcells 5868406 44.8 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3147338 168.1 5709258 305.0 5709258 305.0
Vcells 5878444 44.9 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 0.164355 | 0.165701 | 0.1676767 | 0.1666995 | 0.167651 | 0.196310 |
2 | apply+median | 0.564931 | 0.572115 | 0.5792054 | 0.5771955 | 0.581564 | 0.738975 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+median | 3.437261 | 3.452695 | 3.454299 | 3.462491 | 3.468897 | 3.764327 |
Table: Benchmarking of rowMedians() and apply+median() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 0.165467 | 0.1670745 | 0.1699849 | 0.168743 | 0.1698615 | 0.233873 |
2 | apply+median | 0.519870 | 0.5268825 | 0.5388262 | 0.532013 | 0.5394455 | 0.712988 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.0000 | 1.000000 | 1.000000 |
2 | apply+median | 3.141835 | 3.153578 | 3.169848 | 3.1528 | 3.175796 | 3.048612 |
Figure: Benchmarking of colMedians() and apply+median() on double+1000x10 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMedians() and rowMedians() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 164.355 | 165.7010 | 167.6767 | 166.6995 | 167.6510 | 196.310 |
2 | rowMedians | 165.467 | 167.0745 | 169.9849 | 168.7430 | 169.8615 | 233.873 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMedians | 1.006766 | 1.008289 | 1.013766 | 1.012259 | 1.013185 | 1.191345 |
Figure: Benchmarking of colMedians() and rowMedians() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3147536 168.1 5709258 305.0 5709258 305.0
Vcells 5869450 44.8 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3147527 168.1 5709258 305.0 5709258 305.0
Vcells 5879488 44.9 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 0.187505 | 0.1898935 | 0.2009421 | 0.2010535 | 0.204783 | 0.269487 |
2 | apply+median | 23.604804 | 24.2873645 | 25.9720811 | 24.9555915 | 26.082657 | 40.187996 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
2 | apply+median | 125.8889 | 127.8999 | 129.2516 | 124.1241 | 127.3673 | 149.1278 |
Table: Benchmarking of rowMedians() and apply+median() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 0.187344 | 0.189299 | 0.2021045 | 0.2026505 | 0.206341 | 0.254486 |
2 | apply+median | 23.749928 | 24.189493 | 28.2420950 | 24.7616655 | 26.200569 | 275.449402 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.0000 | 1.0000 | 1.0000 | 1.000 | 1.000 | 1.000 |
2 | apply+median | 126.7718 | 127.7846 | 139.7401 | 122.189 | 126.977 | 1082.375 |
Figure: Benchmarking of colMedians() and apply+median() on double+10x1000 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMedians() and rowMedians() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 187.505 | 189.8935 | 200.9421 | 201.0535 | 204.783 | 269.487 |
2 | rowMedians | 187.344 | 189.2990 | 202.1045 | 202.6505 | 206.341 | 254.486 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.0000000 | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMedians | 0.9991414 | 0.9968693 | 1.005785 | 1.007943 | 1.007608 | 0.944335 |
Figure: Benchmarking of colMedians() and rowMedians() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3147717 168.2 5709258 305.0 5709258 305.0
Vcells 5869568 44.8 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3147708 168.2 5709258 305.0 5709258 305.0
Vcells 5969606 45.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.717125 | 1.74174 | 1.796505 | 1.757344 | 1.794398 | 2.231628 |
2 | apply+median | 27.228123 | 27.45129 | 29.604891 | 28.156392 | 29.288622 | 41.757641 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+median | 15.85681 | 15.76084 | 16.47916 | 16.02213 | 16.32225 | 18.71174 |
Table: Benchmarking of rowMedians() and apply+median() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.728971 | 1.783241 | 1.870608 | 1.862461 | 1.910765 | 2.329959 |
2 | apply+median | 26.920152 | 27.245376 | 29.599800 | 28.054550 | 29.389402 | 54.122493 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
2 | apply+median | 15.57004 | 15.27858 | 15.82362 | 15.06316 | 15.38096 | 23.22895 |
Figure: Benchmarking of colMedians() and apply+median() on double+100x1000 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMedians() and rowMedians() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.717125 | 1.741740 | 1.796505 | 1.757344 | 1.794398 | 2.231628 |
2 | rowMedians | 1.728971 | 1.783241 | 1.870608 | 1.862461 | 1.910765 | 2.329959 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | rowMedians | 1.006899 | 1.023827 | 1.041249 | 1.059816 | 1.06485 | 1.044062 |
Figure: Benchmarking of colMedians() and rowMedians() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3147913 168.2 5709258 305.0 5709258 305.0
Vcells 5870807 44.8 22267496 169.9 56666022 432.4
> colStats <- microbenchmark(colMedians = colMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2L,
+ FUN = median, na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3147904 168.2 5709258 305.0 5709258 305.0
Vcells 5970845 45.6 22267496 169.9 56666022 432.4
> rowStats <- microbenchmark(rowMedians = rowMedians(X, na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1L,
+ FUN = median, na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.619787 | 1.641606 | 1.678234 | 1.666539 | 1.69203 | 2.062155 |
2 | apply+median | 4.969596 | 5.031284 | 5.313666 | 5.066277 | 5.13795 | 13.545102 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | apply+median | 3.068055 | 3.064855 | 3.166225 | 3.039999 | 3.03656 | 6.568421 |
Table: Benchmarking of rowMedians() and apply+median() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.655235 | 1.68752 | 1.728076 | 1.711755 | 1.739273 | 2.180682 |
2 | apply+median | 5.007882 | 5.11950 | 5.400718 | 5.181375 | 5.232999 | 12.726529 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | apply+median | 3.025481 | 3.033743 | 3.125279 | 3.026936 | 3.008727 | 5.836032 |
Figure: Benchmarking of colMedians() and apply+median() on double+1000x100 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds.
Table: Benchmarking of colMedians() and rowMedians() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.619787 | 1.641606 | 1.678234 | 1.666539 | 1.692030 | 2.062155 |
2 | rowMedians | 1.655235 | 1.687520 | 1.728076 | 1.711755 | 1.739273 | 2.180682 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowMedians | 1.021884 | 1.027969 | 1.029699 | 1.027132 | 1.027921 | 1.057477 |
Figure: Benchmarking of colMedians() and rowMedians() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds.
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[4] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[7] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] network_1.15 assertthat_0.2.1 highr_0.8
[7] stats4_3.6.1 blob_1.2.0 robustbase_0.93-5
[10] pillar_1.4.2 RSQLite_2.1.2 backports_1.1.4
[13] lattice_0.20-38 glue_1.3.1 digest_0.6.20
[16] colorspace_1.4-1 sandwich_2.5-1 Matrix_1.2-17
[19] XML_3.98-1.20 lpSolve_5.6.13.3 pkgconfig_2.0.2
[22] genefilter_1.66.0 purrr_0.3.2 ergm_3.10.4
[25] xtable_1.8-4 mvtnorm_1.0-11 scales_1.0.0
[28] tibble_2.1.3 annotate_1.62.0 IRanges_2.18.2
[31] TH.data_1.0-10 withr_2.1.2 BiocGenerics_0.30.0
[34] lazyeval_0.2.2 mime_0.7 survival_2.44-1.1
[37] magrittr_1.5 crayon_1.3.4 statnet.common_4.3.0
[40] memoise_1.1.0 laeken_0.5.0 R.cache_0.13.0
[43] MASS_7.3-51.4 R.rsp_0.43.1 tools_3.6.1
[46] multcomp_1.4-10 S4Vectors_0.22.1 trust_0.1-7
[49] munsell_0.5.0 AnnotationDbi_1.46.1 compiler_3.6.1
[52] rlang_0.4.0 grid_3.6.1 RCurl_1.95-4.12
[55] cwhmisc_6.6 rappdirs_0.3.1 labeling_0.3
[58] bitops_1.0-6 base64enc_0.1-3 boot_1.3-23
[61] gtable_0.3.0 codetools_0.2-16 DBI_1.0.0
[64] markdown_1.1 R6_2.4.0 zoo_1.8-6
[67] dplyr_0.8.3 bit_1.1-14 zeallot_0.1.0
[70] parallel_3.6.1 Rcpp_1.0.2 vctrs_0.2.0
[73] DEoptimR_1.0-8 tidyselect_0.2.5 xfun_0.9
[76] coda_0.19-3
Total processing time was 49.1 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colMedians')
Copyright Henrik Bengtsson. Last updated on 2019-09-10 20:45:20 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>