-
Notifications
You must be signed in to change notification settings - Fork 34
colRowMedians
matrixStats: Benchmark report
This report benchmark the performance of colMedians() and rowMedians() against alternative methods.
- apply() + median()
> rmatrix <- function(nrow, ncol, mode = c("logical",
+ "double", "integer", "index"), range = c(-100, +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ }
+ else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ }
+ else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1,
+ ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10,
+ ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1,
+ ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100,
+ ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x),
+ collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616949 33.0 1168576 62.5 1168576 62.5
Vcells 828001 6.4 2720218 20.8 46816319 357.2
> colStats <- microbenchmark(colMedians = colMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2, FUN = median,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616050 33.0 1168576 62.5 1168576 62.5
Vcells 825732 6.3 2720218 20.8 46816319 357.2
> rowStats <- microbenchmark(rowMedians = rowMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1, FUN = median,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 0.021984 | 0.023253 | 0.0258943 | 0.0255485 | 0.0274035 | 0.079205 |
apply+median | 0.735687 | 0.748920 | 0.7568547 | 0.7538160 | 0.7616560 | 0.936957 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
apply+median | 33.46466 | 32.20746 | 29.22862 | 29.50529 | 27.79411 | 11.82952 |
Table: Benchmarking of rowMedians() and apply+median() on integer+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 0.021529 | 0.023370 | 0.0260989 | 0.026434 | 0.027497 | 0.076376 |
apply+median | 0.736042 | 0.748101 | 0.7570470 | 0.754396 | 0.761485 | 0.952070 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
apply+median | 34.1884 | 32.01117 | 29.00685 | 28.53885 | 27.69338 | 12.46557 |
Figure: Benchmarking of colMedians() and apply+median() on integer+10x10 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colMedians() and rowMedians() on integer+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 21.984 | 23.253 | 25.8943 | 25.5485 | 27.4035 | 79.205 |
rowMedians | 21.529 | 23.370 | 26.0989 | 26.4340 | 27.4970 | 76.376 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.0000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.0000000 |
rowMedians | 0.9793031 | 1.005032 | 1.007901 | 1.03466 | 1.003412 | 0.9642826 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616112 33.0 1168576 62.5 1168576 62.5
Vcells 826761 6.4 2720218 20.8 46816319 357.2
> colStats <- microbenchmark(colMedians = colMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2, FUN = median,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616106 33.0 1168576 62.5 1168576 62.5
Vcells 831804 6.4 2720218 20.8 46816319 357.2
> rowStats <- microbenchmark(rowMedians = rowMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1, FUN = median,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 0.574537 | 0.5857375 | 0.6002099 | 0.5930225 | 0.6096345 | 0.652782 |
apply+median | 8.153576 | 8.2430765 | 8.5735457 | 8.2781910 | 8.3878195 | 14.393381 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
apply+median | 14.19156 | 14.07299 | 14.28425 | 13.95932 | 13.75877 | 22.04929 |
Table: Benchmarking of rowMedians() and apply+median() on integer+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 0.579588 | 0.589008 | 0.6067315 | 0.6006465 | 0.6182435 | 0.707154 |
apply+median | 8.171300 | 8.250465 | 8.5834466 | 8.3015185 | 8.4221140 | 14.371237 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
apply+median | 14.09846 | 14.00739 | 14.14703 | 13.82097 | 13.62265 | 20.32264 |
Figure: Benchmarking of colMedians() and apply+median() on integer+100x100 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colMedians() and rowMedians() on integer+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 574.537 | 585.7375 | 600.2099 | 593.0225 | 609.6345 | 652.782 |
rowMedians | 579.588 | 589.0080 | 606.7315 | 600.6465 | 618.2435 | 707.154 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
rowMedians | 1.008791 | 1.005584 | 1.010866 | 1.012856 | 1.014122 | 1.083293 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616146 33.0 1168576 62.5 1168576 62.5
Vcells 826996 6.4 2720218 20.8 46816319 357.2
> colStats <- microbenchmark(colMedians = colMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2, FUN = median,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616140 33.0 1168576 62.5 1168576 62.5
Vcells 832039 6.4 2720218 20.8 46816319 357.2
> rowStats <- microbenchmark(rowMedians = rowMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1, FUN = median,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 0.550664 | 0.563377 | 0.5695384 | 0.5681175 | 0.5734225 | 0.624810 |
apply+median | 1.967043 | 1.990671 | 2.0527967 | 2.0068925 | 2.0313395 | 5.855182 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
apply+median | 3.572129 | 3.533462 | 3.604316 | 3.532531 | 3.542483 | 9.37114 |
Table: Benchmarking of rowMedians() and apply+median() on integer+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 0.561942 | 0.5708775 | 0.575498 | 0.573793 | 0.578923 | 0.655044 |
apply+median | 1.972294 | 2.0309610 | 2.080297 | 2.042216 | 2.053225 | 5.893092 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
apply+median | 3.509782 | 3.557613 | 3.614777 | 3.559151 | 3.54663 | 8.996483 |
Figure: Benchmarking of colMedians() and apply+median() on integer+1000x10 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colMedians() and rowMedians() on integer+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 550.664 | 563.3770 | 569.5384 | 568.1175 | 573.4225 | 624.810 |
rowMedians | 561.942 | 570.8775 | 575.4980 | 573.7930 | 578.9230 | 655.044 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
rowMedians | 1.020481 | 1.013313 | 1.010464 | 1.00999 | 1.009592 | 1.048389 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616183 33.0 1168576 62.5 1168576 62.5
Vcells 827569 6.4 2720218 20.8 46816319 357.2
> colStats <- microbenchmark(colMedians = colMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2, FUN = median,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616177 33.0 1168576 62.5 1168576 62.5
Vcells 832612 6.4 2720218 20.8 46816319 357.2
> rowStats <- microbenchmark(rowMedians = rowMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1, FUN = median,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 0.636473 | 0.647551 | 0.6820018 | 0.6964995 | 0.7103625 | 0.826486 |
apply+median | 69.039220 | 69.651379 | 72.6058679 | 70.1849300 | 73.1370255 | 188.851181 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
apply+median | 108.4716 | 107.5612 | 106.4599 | 100.7681 | 102.9573 | 228.4989 |
Table: Benchmarking of rowMedians() and apply+median() on integer+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 0.639944 | 0.6488375 | 0.699716 | 0.685069 | 0.751163 | 0.768754 |
apply+median | 68.803048 | 69.6534570 | 71.671152 | 70.155468 | 73.742746 | 87.407614 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.00000 | 1.0000 |
apply+median | 107.5142 | 107.3512 | 102.4289 | 102.4064 | 98.17143 | 113.7004 |
Figure: Benchmarking of colMedians() and apply+median() on integer+10x1000 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colMedians() and rowMedians() on integer+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowMedians | 639.944 | 648.8375 | 699.7160 | 685.0690 | 751.1630 | 768.754 |
1 | colMedians | 636.473 | 647.5510 | 682.0018 | 696.4995 | 710.3625 | 826.486 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowMedians | 1.0000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.000000 |
1 | colMedians | 0.9945761 | 0.9980172 | 0.9746837 | 1.016685 | 0.9456836 | 1.075098 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616221 33.0 1168576 62.5 1168576 62.5
Vcells 827958 6.4 2720218 20.8 46816319 357.2
> colStats <- microbenchmark(colMedians = colMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2, FUN = median,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616215 33.0 1168576 62.5 1168576 62.5
Vcells 878001 6.7 2720218 20.8 46816319 357.2
> rowStats <- microbenchmark(rowMedians = rowMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1, FUN = median,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 5.563861 | 5.593872 | 5.670024 | 5.636278 | 5.678271 | 6.201692 |
apply+median | 81.684161 | 82.454463 | 85.517435 | 82.977224 | 88.691480 | 101.650482 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
apply+median | 14.6812 | 14.74014 | 15.08238 | 14.72199 | 15.61945 | 16.39077 |
Table: Benchmarking of rowMedians() and apply+median() on integer+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 5.755819 | 5.810164 | 6.099968 | 6.254828 | 6.291643 | 6.71782 |
apply+median | 82.532496 | 83.272227 | 87.183014 | 84.262033 | 89.086455 | 204.05583 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
apply+median | 14.33897 | 14.33216 | 14.29237 | 13.47152 | 14.15949 | 30.37531 |
Figure: Benchmarking of colMedians() and apply+median() on integer+100x1000 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colMedians() and rowMedians() on integer+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 5.563861 | 5.593872 | 5.670024 | 5.636278 | 5.678271 | 6.201692 |
rowMedians | 5.755819 | 5.810164 | 6.099968 | 6.254828 | 6.291643 | 6.717820 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
rowMedians | 1.034501 | 1.038666 | 1.075828 | 1.109744 | 1.108021 | 1.083224 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616254 33.0 1168576 62.5 1168576 62.5
Vcells 828419 6.4 2720218 20.8 46816319 357.2
> colStats <- microbenchmark(colMedians = colMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2, FUN = median,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616248 33.0 1168576 62.5 1168576 62.5
Vcells 878462 6.8 2720218 20.8 46816319 357.2
> rowStats <- microbenchmark(rowMedians = rowMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1, FUN = median,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on integer+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 5.370255 | 5.454843 | 5.485661 | 5.477936 | 5.514723 | 5.664002 |
apply+median | 19.065528 | 19.312196 | 20.202206 | 19.513174 | 19.701343 | 23.806442 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.000000 | 1.00000 | 1.00000 | 1.000000 | 1.000000 |
apply+median | 3.550209 | 3.540376 | 3.68273 | 3.56214 | 3.572499 | 4.203113 |
Table: Benchmarking of rowMedians() and apply+median() on integer+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 5.420882 | 5.498012 | 5.583049 | 5.560035 | 5.646114 | 5.819213 |
apply+median | 19.180230 | 19.424437 | 20.328119 | 19.624817 | 19.797588 | 24.038704 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.00000 |
apply+median | 3.538212 | 3.532993 | 3.641043 | 3.529621 | 3.50641 | 4.13092 |
Figure: Benchmarking of colMedians() and apply+median() on integer+1000x100 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colMedians() and rowMedians() on integer+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 5.370255 | 5.454843 | 5.485661 | 5.477936 | 5.514723 | 5.664002 |
rowMedians | 5.420882 | 5.498012 | 5.583049 | 5.560035 | 5.646114 | 5.819213 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
rowMedians | 1.009427 | 1.007914 | 1.017753 | 1.014987 | 1.023825 | 1.027403 |
Figure: Benchmarking of colMedians() and rowMedians() on integer+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> rmatrix <- function(nrow, ncol, mode = c("logical",
+ "double", "integer", "index"), range = c(-100, +100), naProb = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ X <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ }
+ else if (mode == "index") {
+ X <- seq_len(n)
+ mode <- "integer"
+ }
+ else {
+ X <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(X) <- mode
+ if (naProb > 0)
+ X[sample(n, size = naProb * n)] <- NA
+ dim(X) <- c(nrow, ncol)
+ X
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1,
+ ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10,
+ ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1,
+ ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100,
+ ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x),
+ collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = mode)
> X <- data[["10x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616299 33.0 1168576 62.5 1168576 62.5
Vcells 944662 7.3 2720218 20.8 46816319 357.2
> colStats <- microbenchmark(colMedians = colMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2, FUN = median,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616284 33.0 1168576 62.5 1168576 62.5
Vcells 944790 7.3 2720218 20.8 46816319 357.2
> rowStats <- microbenchmark(rowMedians = rowMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1, FUN = median,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 0.025493 | 0.0273185 | 0.0298972 | 0.0301370 | 0.0314155 | 0.081992 |
apply+median | 0.754838 | 0.7621100 | 0.7697493 | 0.7672295 | 0.7727690 | 0.930600 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
apply+median | 29.60962 | 27.89721 | 25.74651 | 25.45806 | 24.59834 | 11.34989 |
Table: Benchmarking of rowMedians() and apply+median() on double+10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 0.025310 | 0.0272015 | 0.0301854 | 0.030335 | 0.0316195 | 0.079216 |
apply+median | 0.752472 | 0.7638645 | 0.7717108 | 0.769256 | 0.7759105 | 0.924807 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.0000 |
apply+median | 29.73023 | 28.08171 | 25.56573 | 25.35869 | 24.53899 | 11.6745 |
Figure: Benchmarking of colMedians() and apply+median() on double+10x10 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colMedians() and rowMedians() on double+10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 25.493 | 27.3185 | 29.89723 | 30.137 | 31.4155 | 81.992 |
rowMedians | 25.310 | 27.2015 | 30.18536 | 30.335 | 31.6195 | 79.216 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.0000000 | 1.0000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
rowMedians | 0.9928216 | 0.9957172 | 1.009637 | 1.00657 | 1.006494 | 0.966143 |
Figure: Benchmarking of colMedians() and rowMedians() on double+10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["100x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616328 33.0 1168576 62.5 1168576 62.5
Vcells 944673 7.3 2720218 20.8 46816319 357.2
> colStats <- microbenchmark(colMedians = colMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2, FUN = median,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616322 33.0 1168576 62.5 1168576 62.5
Vcells 954716 7.3 2720218 20.8 46816319 357.2
> rowStats <- microbenchmark(rowMedians = rowMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1, FUN = median,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 0.97986 | 0.9885755 | 1.003982 | 0.9971385 | 1.009831 | 1.159057 |
apply+median | 8.65658 | 8.7356830 | 9.074466 | 8.7740540 | 8.849899 | 15.014956 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
apply+median | 8.834507 | 8.836637 | 9.038474 | 8.799233 | 8.763742 | 12.95446 |
Table: Benchmarking of rowMedians() and apply+median() on double+100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 0.982058 | 0.9865455 | 1.003638 | 0.9986715 | 1.009146 | 1.102595 |
apply+median | 8.660702 | 8.7246820 | 9.166839 | 8.7724110 | 8.846168 | 24.131511 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
apply+median | 8.818931 | 8.843669 | 9.133608 | 8.784081 | 8.765999 | 21.88611 |
Figure: Benchmarking of colMedians() and apply+median() on double+100x100 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colMedians() and rowMedians() on double+100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 979.860 | 988.5755 | 1003.982 | 997.1385 | 1009.831 | 1159.057 |
rowMedians | 982.058 | 986.5455 | 1003.638 | 998.6715 | 1009.145 | 1102.595 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.0000000 | 1.0000000 | 1.000000 | 1.0000000 | 1.0000000 |
rowMedians | 1.002243 | 0.9979465 | 0.9996574 | 1.001537 | 0.9993212 | 0.9512863 |
Figure: Benchmarking of colMedians() and rowMedians() on double+100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["1000x10"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616362 33.0 1168576 62.5 1168576 62.5
Vcells 945444 7.3 2720218 20.8 46816319 357.2
> colStats <- microbenchmark(colMedians = colMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2, FUN = median,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616356 33.0 1168576 62.5 1168576 62.5
Vcells 955487 7.3 2720218 20.8 46816319 357.2
> rowStats <- microbenchmark(rowMedians = rowMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1, FUN = median,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 0.947704 | 0.952448 | 0.9587941 | 0.956655 | 0.962901 | 1.016348 |
apply+median | 2.295113 | 2.308591 | 2.3939456 | 2.314060 | 2.321354 | 6.116930 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.00000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 |
apply+median | 2.421761 | 2.42385 | 2.49683 | 2.418907 | 2.410792 | 6.018539 |
Table: Benchmarking of rowMedians() and apply+median() on double+1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 0.953218 | 0.957585 | 0.9642135 | 0.9614135 | 0.9673075 | 1.054136 |
apply+median | 2.294181 | 2.310779 | 2.3927721 | 2.3153960 | 2.3233665 | 6.063261 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
apply+median | 2.406775 | 2.413132 | 2.481579 | 2.408325 | 2.40189 | 5.751877 |
Figure: Benchmarking of colMedians() and apply+median() on double+1000x10 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colMedians() and rowMedians() on double+1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 947.704 | 952.448 | 958.7941 | 956.6550 | 962.9010 | 1016.348 |
rowMedians | 953.218 | 957.585 | 964.2135 | 961.4135 | 967.3075 | 1054.136 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
rowMedians | 1.005818 | 1.005394 | 1.005652 | 1.004974 | 1.004576 | 1.03718 |
Figure: Benchmarking of colMedians() and rowMedians() on double+1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["10x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616399 33.0 1168576 62.5 1168576 62.5
Vcells 946368 7.3 2720218 20.8 46816319 357.2
> colStats <- microbenchmark(colMedians = colMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2, FUN = median,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616393 33.0 1168576 62.5 1168576 62.5
Vcells 956411 7.3 2720218 20.8 46816319 357.2
> rowStats <- microbenchmark(rowMedians = rowMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1, FUN = median,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.00256 | 1.006924 | 1.040462 | 1.055429 | 1.070299 | 1.095216 |
apply+median | 70.44712 | 71.020255 | 73.836946 | 71.406787 | 74.341162 | 190.968668 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.0000 |
apply+median | 70.26723 | 70.53193 | 70.96556 | 67.65665 | 69.45831 | 174.3662 |
Table: Benchmarking of rowMedians() and apply+median() on double+10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.004089 | 1.00774 | 1.069477 | 1.069924 | 1.122899 | 1.17808 |
apply+median | 70.239921 | 70.95971 | 72.954504 | 71.520638 | 74.824020 | 88.31986 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.00000 | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 |
apply+median | 69.95388 | 70.4147 | 68.21515 | 66.84647 | 66.63471 | 74.96932 |
Figure: Benchmarking of colMedians() and apply+median() on double+10x1000 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colMedians() and rowMedians() on double+10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.002560 | 1.006924 | 1.040462 | 1.055429 | 1.070299 | 1.095216 |
rowMedians | 1.004089 | 1.007740 | 1.069477 | 1.069924 | 1.122899 | 1.178080 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
rowMedians | 1.001525 | 1.000811 | 1.027887 | 1.013734 | 1.049145 | 1.07566 |
Figure: Benchmarking of colMedians() and rowMedians() on double+10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["100x1000"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616437 33.0 1168576 62.5 1168576 62.5
Vcells 946394 7.3 2720218 20.8 46816319 357.2
> colStats <- microbenchmark(colMedians = colMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2, FUN = median,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616431 33 1168576 62.5 1168576 62.5
Vcells 1046437 8 2720218 20.8 46816319 357.2
> rowStats <- microbenchmark(rowMedians = rowMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1, FUN = median,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 9.497694 | 9.51868 | 9.608652 | 9.607881 | 9.654808 | 9.975026 |
apply+median | 86.386236 | 87.02643 | 91.497260 | 92.055681 | 93.267856 | 205.392841 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.00000 |
apply+median | 9.095496 | 9.142699 | 9.522382 | 9.581267 | 9.66025 | 20.59071 |
Table: Benchmarking of rowMedians() and apply+median() on double+100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 9.518896 | 9.541079 | 9.983978 | 10.25174 | 10.30581 | 10.71646 |
apply+median | 86.613692 | 88.620874 | 92.688267 | 92.55178 | 94.39698 | 206.33038 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
apply+median | 9.099132 | 9.288349 | 9.283701 | 9.027908 | 9.159588 | 19.25359 |
Figure: Benchmarking of colMedians() and apply+median() on double+100x1000 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colMedians() and rowMedians() on double+100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 9.497694 | 9.518680 | 9.608652 | 9.607881 | 9.654808 | 9.975026 |
rowMedians | 9.518896 | 9.541079 | 9.983978 | 10.251741 | 10.305810 | 10.716460 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
rowMedians | 1.002232 | 1.002353 | 1.039061 | 1.067014 | 1.067428 | 1.074329 |
Figure: Benchmarking of colMedians() and rowMedians() on double+100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["1000x100"]]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616470 33.0 1168576 62.5 1168576 62.5
Vcells 947507 7.3 2720218 20.8 46816319 357.2
> colStats <- microbenchmark(colMedians = colMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 2, FUN = median,
+ na.rm = FALSE), unit = "ms")
> X <- t(X)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 616464 33 1168576 62.5 1168576 62.5
Vcells 1047550 8 2720218 20.8 46816319 357.2
> rowStats <- microbenchmark(rowMedians = rowMedians(X,
+ na.rm = FALSE), `apply+median` = apply(X, MARGIN = 1, FUN = median,
+ na.rm = FALSE), unit = "ms")
Table: Benchmarking of colMedians() and apply+median() on double+1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 9.21618 | 9.242066 | 9.28544 | 9.286769 | 9.317089 | 9.484179 |
apply+median | 22.50194 | 22.604104 | 24.02622 | 22.689903 | 26.304582 | 26.716820 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
apply+median | 2.441569 | 2.445785 | 2.587516 | 2.443251 | 2.823262 | 2.816988 |
Table: Benchmarking of rowMedians() and apply+median() on double+1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 9.379204 | 9.411378 | 9.579676 | 9.663805 | 9.716439 | 10.02473 |
apply+median | 22.849876 | 23.021481 | 25.517116 | 23.152305 | 26.589968 | 128.81907 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
rowMedians | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 |
apply+median | 2.436228 | 2.446133 | 2.663672 | 2.395775 | 2.736596 | 12.85012 |
Figure: Benchmarking of colMedians() and apply+median() on double+1000x100 data as well as rowMedians() and apply+median() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colMedians() and rowMedians() on double+1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 9.216180 | 9.242066 | 9.285440 | 9.286769 | 9.317089 | 9.484179 |
rowMedians | 9.379204 | 9.411378 | 9.579676 | 9.663805 | 9.716439 | 10.024733 |
expr | min | lq | mean | median | uq | max |
---|---|---|---|---|---|---|
colMedians | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
rowMedians | 1.017689 | 1.01832 | 1.031688 | 1.040599 | 1.042862 | 1.056995 |
Figure: Benchmarking of colMedians() and rowMedians() on double+1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
R version 3.2.2 Patched (2015-10-26 r69575)
Platform: x86_64-pc-linux-gnu (64-bit)
locale:
[1] C
attached base packages:
[1] methods stats graphics grDevices utils datasets base
other attached packages:
[1] markdown_0.7.7 microbenchmark_1.4-2 matrixStats_0.15.0
[4] ggplot2_1.0.1 knitr_1.11 R.devices_2.13.1
[7] R.utils_2.1.0 R.oo_1.19.0 R.methodsS3_1.7.0
loaded via a namespace (and not attached):
[1] Rcpp_0.12.1 magrittr_1.5 MASS_7.3-44 munsell_0.4.2
[5] colorspace_1.2-6 R.cache_0.11.0 stringr_1.0.0 highr_0.5.1
[9] plyr_1.8.3 tools_3.2.2 grid_3.2.2 gtable_0.1.2
[13] digest_0.6.8 R.rsp_0.20.0 reshape2_1.4.1 base64enc_0.1-3
[17] mime_0.4 labeling_0.3 stringi_1.0-1 scales_0.3.0
[21] proto_0.3-10
Total processing time was 1.76 mins.
To reproduce this report, do:
html <- matrixStats:::benchmark('colMedians')
Copyright Henrik Bengtsson. Last updated on 2015-10-27 11:41:04 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>