-
Notifications
You must be signed in to change notification settings - Fork 34
colRowAnys_subset
matrixStats: Benchmark report
This report benchmark the performance of colAnys() and rowAnys() on subsetted computation.
> rmatrix <- function(nrow, ncol, mode = c("logical", "double", "integer", "index"), range = c(-100,
+ +100), na_prob = 0) {
+ mode <- match.arg(mode)
+ n <- nrow * ncol
+ if (mode == "logical") {
+ x <- sample(c(FALSE, TRUE), size = n, replace = TRUE)
+ } else if (mode == "index") {
+ x <- seq_len(n)
+ mode <- "integer"
+ } else {
+ x <- runif(n, min = range[1], max = range[2])
+ }
+ storage.mode(x) <- mode
+ if (na_prob > 0)
+ x[sample(n, size = na_prob * n)] <- NA
+ dim(x) <- c(nrow, ncol)
+ x
+ }
> rmatrices <- function(scale = 10, seed = 1, ...) {
+ set.seed(seed)
+ data <- list()
+ data[[1]] <- rmatrix(nrow = scale * 1, ncol = scale * 1, ...)
+ data[[2]] <- rmatrix(nrow = scale * 10, ncol = scale * 10, ...)
+ data[[3]] <- rmatrix(nrow = scale * 100, ncol = scale * 1, ...)
+ data[[4]] <- t(data[[3]])
+ data[[5]] <- rmatrix(nrow = scale * 10, ncol = scale * 100, ...)
+ data[[6]] <- t(data[[5]])
+ names(data) <- sapply(data, FUN = function(x) paste(dim(x), collapse = "x"))
+ data
+ }
> data <- rmatrices(mode = "logical")
> X <- data[["10x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3103114 165.8 4823098 257.6 4823098 257.6
Vcells 5671569 43.3 18742341 143.0 61159414 466.7
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows,
+ cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3102042 165.7 4823098 257.6 4823098 257.6
Vcells 5668799 43.3 18742341 143.0 61159414 466.7
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols,
+ cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 0.001305 | 0.0013490 | 0.0016595 | 0.001402 | 0.0015125 | 0.022670 |
2 | colAnys(X, rows, cols) | 0.001465 | 0.0015175 | 0.0016257 | 0.001567 | 0.0016540 | 0.004061 |
3 | colAnys(X[rows, cols]) | 0.001953 | 0.0022165 | 0.0023833 | 0.002286 | 0.0023820 | 0.008481 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colAnys(X, rows, cols) | 1.122605 | 1.124907 | 0.9796386 | 1.117689 | 1.093554 | 0.1791354 |
3 | colAnys(X[rows, cols]) | 1.496552 | 1.643069 | 1.4361528 | 1.630528 | 1.574876 | 0.3741067 |
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 10x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 0.001292 | 0.0013420 | 0.0014290 | 0.001371 | 0.0014530 | 0.003316 |
2 | rowAnys(X, cols, rows) | 0.001475 | 0.0015315 | 0.0019527 | 0.001583 | 0.0016785 | 0.034527 |
3 | rowAnys(X[cols, rows]) | 0.001841 | 0.0021350 | 0.0022718 | 0.002181 | 0.0022945 | 0.006839 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnys(X, cols, rows) | 1.141641 | 1.141207 | 1.366506 | 1.154632 | 1.155196 | 10.412244 |
3 | rowAnys(X[cols, rows]) | 1.424923 | 1.590909 | 1.589777 | 1.590810 | 1.579147 | 2.062425 |
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x10 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowAnys_X_S | 1.292 | 1.342 | 1.42898 | 1.371 | 1.4530 | 3.316 |
1 | colAnys_X_S | 1.305 | 1.349 | 1.65951 | 1.402 | 1.5125 | 22.670 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
2 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.00000 |
1 | colAnys_X_S | 1.010062 | 1.005216 | 1.161325 | 1.022611 | 1.04095 | 6.83655 |
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["100x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3100592 165.6 4823098 257.6 4823098 257.6
Vcells 5336926 40.8 18742341 143.0 61159414 466.7
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows,
+ cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3100586 165.6 4823098 257.6 4823098 257.6
Vcells 5342009 40.8 18742341 143.0 61159414 466.7
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols,
+ cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 0.001906 | 0.002213 | 0.0024157 | 0.0023430 | 0.0025245 | 0.005047 |
2 | colAnys(X, rows, cols) | 0.002290 | 0.002573 | 0.0029221 | 0.0027445 | 0.0029885 | 0.011148 |
3 | colAnys(X[rows, cols]) | 0.017392 | 0.017816 | 0.0190385 | 0.0179830 | 0.0181980 | 0.057043 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnys(X, rows, cols) | 1.201469 | 1.162675 | 1.209619 | 1.171361 | 1.183799 | 2.208837 |
3 | colAnys(X[rows, cols]) | 9.124869 | 8.050610 | 7.881095 | 7.675203 | 7.208556 | 11.302358 |
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 100x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 0.004509 | 0.0047755 | 0.0049708 | 0.004896 | 0.0050290 | 0.008161 |
2 | rowAnys(X, cols, rows) | 0.004857 | 0.0052085 | 0.0053674 | 0.005331 | 0.0054375 | 0.007504 |
3 | rowAnys(X[cols, rows]) | 0.011920 | 0.0122635 | 0.0131430 | 0.012422 | 0.0126040 | 0.061899 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnys(X, cols, rows) | 1.077179 | 1.090671 | 1.079782 | 1.088848 | 1.081229 | 0.9194952 |
3 | rowAnys(X[cols, rows]) | 2.643602 | 2.568003 | 2.644058 | 2.537173 | 2.506264 | 7.5847323 |
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x100 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.906 | 2.2130 | 2.41572 | 2.343 | 2.5245 | 5.047 |
2 | rowAnys_X_S | 4.509 | 4.7755 | 4.97078 | 4.896 | 5.0290 | 8.161 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000 |
2 | rowAnys_X_S | 2.365687 | 2.15793 | 2.057681 | 2.089629 | 1.992078 | 1.617 |
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["1000x10"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101344 165.7 4823098 257.6 4823098 257.6
Vcells 5340992 40.8 18742341 143.0 61159414 466.7
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows,
+ cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101338 165.7 4823098 257.6 4823098 257.6
Vcells 5346075 40.8 18742341 143.0 61159414 466.7
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols,
+ cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x10 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 0.001333 | 0.0014020 | 0.0018005 | 0.0014970 | 0.0016155 | 0.010111 |
2 | colAnys(X, rows, cols) | 0.002059 | 0.0021775 | 0.0032207 | 0.0023085 | 0.0024280 | 0.029217 |
3 | colAnys(X[rows, cols]) | 0.015924 | 0.0168000 | 0.0201644 | 0.0169285 | 0.0171755 | 0.106120 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 |
2 | colAnys(X, rows, cols) | 1.544636 | 1.553138 | 1.788734 | 1.542084 | 1.50294 | 2.889625 |
3 | colAnys(X[rows, cols]) | 11.945987 | 11.982882 | 11.199164 | 11.308283 | 10.63169 | 10.495500 |
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 1000x10 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 0.004797 | 0.0051965 | 0.0056545 | 0.0053410 | 0.0055050 | 0.035472 |
2 | rowAnys(X, cols, rows) | 0.005285 | 0.0054650 | 0.0056345 | 0.0055605 | 0.0057075 | 0.010916 |
3 | rowAnys(X[cols, rows]) | 0.013819 | 0.0143980 | 0.0150778 | 0.0146970 | 0.0148815 | 0.033566 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.0000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnys(X, cols, rows) | 1.101730 | 1.051669 | 0.9964506 | 1.041097 | 1.036785 | 0.3077357 |
3 | rowAnys(X[cols, rows]) | 2.880759 | 2.770711 | 2.6664963 | 2.751732 | 2.703270 | 0.9462675 |
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x10 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x10 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.333 | 1.4020 | 1.80053 | 1.497 | 1.6155 | 10.111 |
2 | rowAnys_X_S | 4.797 | 5.1965 | 5.65454 | 5.341 | 5.5050 | 35.472 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.00000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnys_X_S | 3.59865 | 3.706491 | 3.140486 | 3.567802 | 3.407614 | 3.508258 |
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x10 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["10x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101550 165.7 4823098 257.6 4823098 257.6
Vcells 5341797 40.8 18742341 143.0 61159414 466.7
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows,
+ cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101544 165.7 4823098 257.6 4823098 257.6
Vcells 5346880 40.8 18742341 143.0 61159414 466.7
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols,
+ cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 0.005221 | 0.0057590 | 0.0065432 | 0.0061285 | 0.006483 | 0.042371 |
2 | colAnys(X, rows, cols) | 0.008211 | 0.0094225 | 0.0102840 | 0.0100160 | 0.010651 | 0.023703 |
3 | colAnys(X[rows, cols]) | 0.014338 | 0.0149465 | 0.0158671 | 0.0154315 | 0.015782 | 0.031641 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | colAnys(X, rows, cols) | 1.572687 | 1.636135 | 1.571699 | 1.634331 | 1.642912 | 0.5594156 |
3 | colAnys(X[rows, cols]) | 2.746217 | 2.595329 | 2.424964 | 2.517990 | 2.434367 | 0.7467608 |
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 10x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 0.009220 | 0.0099475 | 0.0110537 | 0.0104010 | 0.0109665 | 0.048314 |
2 | rowAnys(X, cols, rows) | 0.010392 | 0.0118965 | 0.0126637 | 0.0125045 | 0.0130695 | 0.020191 |
3 | rowAnys(X[cols, rows]) | 0.016750 | 0.0177845 | 0.0188319 | 0.0183330 | 0.0189390 | 0.038611 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnys(X, cols, rows) | 1.127115 | 1.195929 | 1.145653 | 1.202240 | 1.191766 | 0.4179120 |
3 | rowAnys(X[cols, rows]) | 1.816703 | 1.787836 | 1.703676 | 1.762619 | 1.726987 | 0.7991679 |
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 10x1000 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 5.221 | 5.7590 | 6.54323 | 6.1285 | 6.4830 | 42.371 |
2 | rowAnys_X_S | 9.220 | 9.9475 | 11.05366 | 10.4010 | 10.9665 | 48.314 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnys_X_S | 1.765945 | 1.727296 | 1.689328 | 1.697153 | 1.691578 | 1.140261 |
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 10x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["100x1000"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101749 165.7 4823098 257.6 4823098 257.6
Vcells 5364441 41.0 18742341 143.0 61159414 466.7
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows,
+ cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101743 165.7 4823098 257.6 4823098 257.6
Vcells 5414524 41.4 18742341 143.0 61159414 466.7
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols,
+ cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x1000 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 0.005964 | 0.0073925 | 0.0088661 | 0.0082775 | 0.0091140 | 0.019756 |
2 | colAnys(X, rows, cols) | 0.010998 | 0.0133480 | 0.0149118 | 0.0142575 | 0.0153315 | 0.026915 |
3 | colAnys(X[rows, cols]) | 0.157643 | 0.1754560 | 0.1877240 | 0.1861670 | 0.1926820 | 0.278515 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.00000 | 1.000000 | 1.000000 |
2 | colAnys(X, rows, cols) | 1.844064 | 1.805614 | 1.681892 | 1.72244 | 1.682192 | 1.362371 |
3 | colAnys(X[rows, cols]) | 26.432428 | 23.734325 | 21.173286 | 22.49073 | 21.141321 | 14.097743 |
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 100x1000 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 0.035299 | 0.0393190 | 0.0401875 | 0.0402610 | 0.0407755 | 0.069281 |
2 | rowAnys(X, cols, rows) | 0.034283 | 0.0395830 | 0.0411409 | 0.0409925 | 0.0422180 | 0.058010 |
3 | rowAnys(X[cols, rows]) | 0.100286 | 0.1129605 | 0.1156707 | 0.1155745 | 0.1175915 | 0.150971 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 1.0000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnys(X, cols, rows) | 0.9712173 | 1.006714 | 1.023724 | 1.018169 | 1.035377 | 0.8373147 |
3 | rowAnys(X[cols, rows]) | 2.8410437 | 2.872924 | 2.878272 | 2.870632 | 2.883876 | 2.1791112 |
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 100x1000 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x1000 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 5.964 | 7.3925 | 8.86608 | 8.2775 | 9.1140 | 19.756 |
2 | rowAnys_X_S | 35.299 | 39.3190 | 40.18753 | 40.2610 | 40.7755 | 69.281 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | rowAnys_X_S | 5.918679 | 5.318769 | 4.532728 | 4.863908 | 4.473941 | 3.506833 |
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 100x1000 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
> X <- data[["1000x100"]]
> rows <- sample.int(nrow(X), size = nrow(X) * 0.7)
> cols <- sample.int(ncol(X), size = ncol(X) * 0.7)
> X_S <- X[rows, cols]
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101961 165.7 4823098 257.6 4823098 257.6
Vcells 5365103 41.0 18742341 143.0 61159414 466.7
> colStats <- microbenchmark(colAnys_X_S = colAnys(X_S), `colAnys(X, rows, cols)` = colAnys(X, rows = rows,
+ cols = cols), `colAnys(X[rows, cols])` = colAnys(X[rows, cols]), unit = "ms")
> X <- t(X)
> X_S <- t(X_S)
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3101955 165.7 4823098 257.6 4823098 257.6
Vcells 5415186 41.4 18742341 143.0 61159414 466.7
> rowStats <- microbenchmark(rowAnys_X_S = rowAnys(X_S), `rowAnys(X, cols, rows)` = rowAnys(X, rows = cols,
+ cols = rows), `rowAnys(X[cols, rows])` = rowAnys(X[cols, rows]), unit = "ms")
Table: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x100 data. The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 0.001995 | 0.0025625 | 0.0028477 | 0.0028200 | 0.0029805 | 0.005974 |
2 | colAnys(X, rows, cols) | 0.003044 | 0.0035970 | 0.0039709 | 0.0039195 | 0.0042015 | 0.008150 |
3 | colAnys(X[rows, cols]) | 0.067996 | 0.0721180 | 0.0758151 | 0.0756520 | 0.0767555 | 0.159451 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
2 | colAnys(X, rows, cols) | 1.525815 | 1.403707 | 1.394423 | 1.389894 | 1.409663 | 1.364245 |
3 | colAnys(X[rows, cols]) | 34.083208 | 28.143610 | 26.623009 | 26.826950 | 25.752558 | 26.690827 |
Table: Benchmarking of rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on 1000x100 data (transposed). The top panel shows times in milliseconds and the bottom panel shows relative times. |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 0.029286 | 0.0331235 | 0.0340439 | 0.0344170 | 0.0348965 | 0.047718 |
2 | rowAnys(X, cols, rows) | 0.029751 | 0.0332825 | 0.0340534 | 0.0344730 | 0.0352025 | 0.035944 |
3 | rowAnys(X[cols, rows]) | 0.097496 | 0.1094680 | 0.1131570 | 0.1131565 | 0.1159460 | 0.198368 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | rowAnys_X_S | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.0000000 |
2 | rowAnys(X, cols, rows) | 1.015878 | 1.004800 | 1.000280 | 1.001627 | 1.008769 | 0.7532587 |
3 | rowAnys(X[cols, rows]) | 3.329099 | 3.304844 | 3.323854 | 3.287808 | 3.322568 | 4.1570896 |
Figure: Benchmarking of colAnys_X_S(), colAnys(X, rows, cols)() and colAnys(X[rows, cols])() on 1000x100 data as well as rowAnys_X_S(), rowAnys(X, cols, rows)() and rowAnys(X[cols, rows])() on the same data transposed. Outliers are displayed as crosses. Times are in milliseconds. |
Table: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x100 data (original and transposed). The top panel shows times in milliseconds and the bottom panel shows relative times.
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.995 | 2.5625 | 2.84773 | 2.820 | 2.9805 | 5.974 |
2 | rowAnys_X_S | 29.286 | 33.1235 | 34.04390 | 34.417 | 34.8965 | 47.718 |
expr | min | lq | mean | median | uq | max | |
---|---|---|---|---|---|---|---|
1 | colAnys_X_S | 1.0000 | 1.00000 | 1.00000 | 1.00000 | 1.00000 | 1.000000 |
2 | rowAnys_X_S | 14.6797 | 12.92624 | 11.95475 | 12.20461 | 11.70827 | 7.987613 |
Figure: Benchmarking of colAnys_X_S() and rowAnys_X_S() on 1000x100 data (original and transposed). Outliers are displayed as crosses. Times are in milliseconds. |
R version 3.6.1 Patched (2019-08-27 r77078)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.3 LTS
Matrix products: default
BLAS: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRblas.so
LAPACK: /home/hb/software/R-devel/R-3-6-branch/lib/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] genefilter_1.66.0 laeken_0.5.0 ergm_3.10.4
[4] network_1.15 cwhmisc_6.6 lattice_0.20-38
[7] microbenchmark_1.4-6 matrixStats_0.55.0-9000 ggplot2_3.2.1
[10] knitr_1.24 R.devices_2.16.0 R.utils_2.9.0
[13] R.oo_1.22.0 R.methodsS3_1.7.1 history_0.0.0-9002
loaded via a namespace (and not attached):
[1] Biobase_2.45.0 bit64_0.9-7 splines_3.6.1
[4] assertthat_0.2.1 highr_0.8 stats4_3.6.1
[7] blob_1.2.0 robustbase_0.93-5 pillar_1.4.2
[10] RSQLite_2.1.2 backports_1.1.4 glue_1.3.1
[13] digest_0.6.20 colorspace_1.4-1 sandwich_2.5-1
[16] Matrix_1.2-17 XML_3.98-1.20 lpSolve_5.6.13.3
[19] pkgconfig_2.0.2 purrr_0.3.2 xtable_1.8-4
[22] mvtnorm_1.0-11 scales_1.0.0 tibble_2.1.3
[25] annotate_1.62.0 IRanges_2.18.2 TH.data_1.0-10
[28] withr_2.1.2 BiocGenerics_0.30.0 lazyeval_0.2.2
[31] mime_0.7 survival_2.44-1.1 magrittr_1.5
[34] crayon_1.3.4 statnet.common_4.3.0 memoise_1.1.0
[37] R.cache_0.13.0 MASS_7.3-51.4 R.rsp_0.43.1
[40] tools_3.6.1 multcomp_1.4-10 S4Vectors_0.22.1
[43] trust_0.1-7 munsell_0.5.0 AnnotationDbi_1.46.1
[46] compiler_3.6.1 rlang_0.4.0 RCurl_1.95-4.12
[49] rappdirs_0.3.1 labeling_0.3 bitops_1.0-6
[52] base64enc_0.1-3 boot_1.3-23 gtable_0.3.0
[55] codetools_0.2-16 DBI_1.0.0 markdown_1.1
[58] R6_2.4.0 zoo_1.8-6 dplyr_0.8.3
[61] bit_1.1-14 zeallot_0.1.0 parallel_3.6.1
[64] Rcpp_1.0.2 vctrs_0.2.0 DEoptimR_1.0-8
[67] tidyselect_0.2.5 xfun_0.9 coda_0.19-3
Total processing time was 12.23 secs.
To reproduce this report, do:
html <- matrixStats:::benchmark('colRowAnys_subset')
Copyright Dongcan Jiang. Last updated on 2019-09-10 14:58:29 (-0700 UTC). Powered by RSP.
<script> var link = document.createElement('link'); link.rel = 'icon'; link.href = "" document.getElementsByTagName('head')[0].appendChild(link); </script>