This package implements methods to analyze and visualize expression data.
- It supports normalized input as e.g. from Cufflinks or expression chip arrays and raw count data from bam file input.
- It supports mRNA, miRNA, protein or other expression data.
So far, it is only implemented for human and mouse data!
It uses function from the following packages:
- AnnotationDbi for annotating gene information
- beadarray for importing Illumina expression chip files from GenomeStudio
- clusterProfiler and DOSE for functional enrichment analysis
- DESeq2 for differential expression analysis of raw count data
- GenomicAlignments, GenomicFeatures, Rsamtools for reading bam files
- pcaGoPromoter for principle component analysis
- limma for differential expression analysis of normalised expression data
- pathview for mapping KEGG pathways
- gplots for heatmaps
- sva for batch correction
- WGCNA for coregulatory network determination
Dr. Shirin Glander
# install package from github
install.packages("devtools")
library(devtools)
# either the latest stable release that passed TRAVIS CI check
devtools::install_github("ShirinG/exprAnalysis", build_vignettes=TRUE, ref = "stable.version0.1.0")
# or the development version
devtools::install_github("ShirinG/exprAnalysis", build_vignettes=TRUE, ref = "master")
There might be problems with installation of some dependency packages (especially Bioconductor packages and WGCNA and its dependencies from CRAN). In order to install them manually:
list.of.packages_bioconductor <- c("arrayQualityMetrics", "beadarray", "pcaGoPromoter", "limma", "pathview", "sva", "GO.db", "impute")
list.of.packages_cran <- c("WGCNA", "roxygen2", "testthat", "gplots")
new.packages_bioconductor <- list.of.packages_bioconductor[!(list.of.packages_bioconductor %in% installed.packages()[,"Package"])]
new.packages_cran <- list.of.packages_cran[!(list.of.packages_cran %in% installed.packages()[,"Package"])]
# CRAN
if(length(new.packages_cran)>0) install.packages(new.packages_cran)
# Bioconductor
if(length(new.packages_bioconductor)>0) {
source("https://bioconductor.org/biocLite.R")
biocLite(new.packages_bioconductor)
}
Beware that the vignette is rather large and thus takes a minute to compile. You can also see the Vignette at https://shiring.github.io/rna-seq/microarray/2016/09/28/exprAnalysis.
To view the vignette if you built it with the package:
vignette("exprAnalysis", package="exprAnalysis")
vignette("CummeRbund", package="exprAnalysis")
browseVignettes("exprAnalysis")