Skip to content

[Quantization] Channel-wise Output Activation Quantization for Attention QKV Modules + KV-cache channel quantization #1233

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 9 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/llmcompressor/modifiers/quantization/cache.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,6 +90,7 @@ def update(
self.k_observers.append(k_observer)
self.v_observers.append(v_observer)

# batch x heads x seq_len x head_dim
q_key_states = self._quantize(
key_states.contiguous(), KVCacheScaleType.KEY, layer_idx
)
Expand Down Expand Up @@ -150,6 +151,7 @@ def _quantize(self, tensor, kv_type, layer_idx):
scales = self.v_scales
zps = self.v_zps

# tensor
scale, zp = observer(tensor)
if len(scales) <= layer_idx:
scales.append(scale)
Expand Down
4 changes: 3 additions & 1 deletion src/llmcompressor/modifiers/quantization/calibration.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,9 @@ def call_observer(module: Module, base_name: str, value: Optional[torch.Tensor]
raise ValueError("Must provide a value to observe if not using weight observer")

observer = getattr(module, f"{base_name}_observer")
updated_scale, updated_zero_point = observer(value, g_idx=g_idx)
updated_scale, updated_zero_point = observer(
value, g_idx=g_idx, base_name=base_name
)

# update scale and zero point
update_parameter_data(module, updated_scale, f"{base_name}_scale")
Expand Down
30 changes: 26 additions & 4 deletions src/llmcompressor/observers/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,10 @@ def __init__(self, quantization_args: QuantizationArgs):

@torch.no_grad()
def forward(
self, observed: Tensor, g_idx: Optional[Tensor] = None
self,
observed: Tensor,
g_idx: Optional[Tensor] = None,
base_name: Optional[str] = None,
) -> Tuple[FloatTensor, IntTensor]:
"""
maps directly to get_qparams
Expand All @@ -40,8 +43,9 @@ def forward(
:param g_idx: optional mapping from column index to group index
:return: tuple of scale and zero point based on last observed value
"""
# breakpoint()
self.record_observed_tokens(observed)
return self.get_qparams(observed=observed, g_idx=g_idx)
return self.get_qparams(observed=observed, g_idx=g_idx, base_name=base_name)

def calculate_qparams(
self,
Expand All @@ -66,6 +70,7 @@ def get_qparams(
self,
observed: Optional[Tensor] = None,
g_idx: Optional[Tensor] = None,
base_name: Optional[str] = None,
) -> Tuple[FloatTensor, IntTensor]:
"""
Convenience function to wrap overwritten calculate_qparams
Expand Down Expand Up @@ -123,8 +128,25 @@ def get_qparams(
self._zero_point[:, group_index] = zero_point.squeeze(1)

elif self.quantization_args.strategy == QuantizationStrategy.CHANNEL:
# assume observed is transposed, because its the output, hence use dim 0
self._scale, self._zero_point = self.get_qparams_along_dim(observed, 0)
if base_name == "output":
# the last dimension is the hidden dimension
# shape of [1,1, num_key_value_heads * head_dim]
scale, zero_point = self.get_qparams_along_dim(
observed, observed.ndim - 1
)
self._scale = (
scale.squeeze()
) # shape of [num_key_value_heads * head_dim]
self._zero_point = (
zero_point.squeeze()
) # shape of [num_key_value_heads * head_dim]
else:
# weight or input
# assume observed is transposed,
# because its the output, hence use dim 0
self._scale, self._zero_point = self.get_qparams_along_dim(
observed, 0
)

elif self.quantization_args.strategy == QuantizationStrategy.TOKEN:
# use dim 1, assume the obsersed.shape = [batch, token, hidden]
Expand Down
Loading