Skip to content

[IPSN 24, Best Paper Award] The official repo of "ArtFL: Exploiting Data Resolution in Federated Learning for Dynamic Runtime Inference via Multi-Scale Training".

License

Notifications You must be signed in to change notification settings

siyang-jiang/ArtFL

Repository files navigation

ArtFL Offical Source Code

ArtFL: Exploiting Data Resolution in Federated Learning for Dynamic Runtime Inference via Multi-Scale Training

News

[Paper 🤗] [Demo Video🤗]

  • 🔥 Upload the training record of CIFAR-10
  • 🏆 ArtFL got Best Paper Award at IPSN 2024
  • 🔥 Release Sample Code

Install

  1. Clone the repo into a local folder. ` git clone https://github.com/siyang-jiang/ArtFL.git

cd ArtFL `

  1. Install packages.
conda env create -f environment.yml
conda activate exFL

Quick Start

Before run the bash, make sure you have already prepare the right path to the dataset.

  • Change the data path: utils/utils.py change the path and make the data right
bash run.sh

See the training log in CIFAR-10

tensorboard --log_dir=./exp_results_cifar10

Source Tree

├── config
├── data
├── dataloader
│   ├── __init__.py
│   ├── LoaderCifar_deprecated.py
│   ├── LoaderCifar.py
│   └── loader_mini_imagenet.py
├── dataset
│   ├── cifar10.py
│   ├── cifar.py
│   └── tiny_imagenet.py
├── environment.yml
├── fed_branch.py
├── LICENSE
├── loss
├── models
├── README.md
├── requirements.txt
├── run.sh
├── src
├── train_branch.py
└── utils

Citation

Acknowledgement

BalanceFL (IPSN 2022)

License

MIT License.

About

[IPSN 24, Best Paper Award] The official repo of "ArtFL: Exploiting Data Resolution in Federated Learning for Dynamic Runtime Inference via Multi-Scale Training".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published