ArtFL: Exploiting Data Resolution in Federated Learning for Dynamic Runtime Inference via Multi-Scale Training
[Paper 🤗] [Demo Video🤗]
- 🔥 Upload the training record of CIFAR-10
- 🏆 ArtFL got Best Paper Award at IPSN 2024
- 🔥 Release Sample Code
- Clone the repo into a local folder. ` git clone https://github.com/siyang-jiang/ArtFL.git
cd ArtFL `
- Install packages.
conda env create -f environment.yml
conda activate exFL
Before run the bash, make sure you have already prepare the right path to the dataset.
- Change the data path: utils/utils.py change the path and make the data right
bash run.sh
See the training log in CIFAR-10
tensorboard --log_dir=./exp_results_cifar10
├── config
├── data
├── dataloader
│ ├── __init__.py
│ ├── LoaderCifar_deprecated.py
│ ├── LoaderCifar.py
│ └── loader_mini_imagenet.py
├── dataset
│ ├── cifar10.py
│ ├── cifar.py
│ └── tiny_imagenet.py
├── environment.yml
├── fed_branch.py
├── LICENSE
├── loss
├── models
├── README.md
├── requirements.txt
├── run.sh
├── src
├── train_branch.py
└── utils
MIT License.