Skip to content

shendu-sw/HyperDID

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Implementation Codes for HyperDID

Introduction

This project provides the implementation of the paper "HyperDID: Hyperspectral Intrinsic Image Decomposition with Deep Feature Embedding". [paper]

Requirements

  • torch
  • cuda

Project architecture

  • demo.py
  • data_process.py
  • evaluate.py
  • model
    • contrastive_learning.py
  • data
    • indian
      • IndianPine.mat
      • AVIRIS_colormap.mat
    • pavia
    • houston2013
    • houston2018
  • checkpoint
  • results

Running

  • Training

python demo.py --patches 5

  • Testing

python demo.py --patches 5 --flag_test test

Citing this work

If you find this work helpful for your research, please consider citing:

@article{gong2024,
    Author = {Zhiqiang Gong and Xian Zhou and Wen Yao and Xiaohu Zheng and Ping Zhong},
    Title = {HyperDID: Hyperspectral Intrinsic Image Decomposition with Deep Feature Embedding},
    Journal = {IEEE Transactions on Geoscience and Remote Sensing},
    volume = 62,
    Year = {2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages