-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
174 lines (129 loc) · 5.61 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
import numpy as np
from sklearn.metrics import confusion_matrix
import torch.nn.functional as F
#-------------------------------------------------------------------------------
# train model
def train_epoch(model, discriminator, contrastor, train_loader, criterion, pseudo_criterion,adver_pseudo_criterion,env_criterion, optimizer, optimizer1, alpha = 1, beta = 1, gama=1):
objs = AvgrageMeter()
top1 = AvgrageMeter()
tar = np.array([])
pre = np.array([])
for batch_idx, (batch_data, batch_target, batch_pseudo_target) in enumerate(train_loader):
batch_data = batch_data.cuda()
batch_target = batch_target.cuda()
batch_pseudo_target = batch_pseudo_target.cuda()
optimizer.zero_grad()
features_1, features_2, batch_pred = model(batch_data)
env_labels = torch.cat([torch.ones(features_1.shape[0]), torch.zeros(features_2.shape[0])], 0).cuda()
#print(env_labels.long().shape)
#aa = torch.cat([features_1, features_2], 0)
#print(aa.shape)
loss_4 = env_criterion(torch.cat([features_1, features_2], 0), env_labels.long())
pseudo_pred = discriminator(features_1)
real_pred = contrastor(features_2)
loss_1 = criterion(batch_pred, batch_target)
#pseudo_pred_1 = torch.roll(pseudo_pred, 1, 0)
#real_pred_1 = torch.roll(real_pred, 1, 0)
pseudo_indicate = torch.eq(batch_pseudo_target, torch.roll(batch_pseudo_target, 1, 0)) * 1 + \
torch.ne(batch_pseudo_target, torch.roll(batch_pseudo_target, 1, 0)) * (-1)
real_indicate = torch.eq(batch_target, torch.roll(batch_target, 1, 0)) * 1 + \
torch.ne(batch_target, torch.roll(batch_target, 1, 0)) * (-1)
loss_2 = pseudo_criterion(pseudo_pred, torch.roll(pseudo_pred, 1, 0), pseudo_indicate)
loss_3 = adver_pseudo_criterion(real_pred, torch.roll(real_pred, 1, 0), real_indicate)
loss = loss_1 + alpha * loss_2 + beta * loss_3 + gama * loss_4
loss.backward()
optimizer.step()
#pseudo_pred = discriminator(features_1.detach())
#pseu_loss = adver_pseudo_criterion(pseudo_pred, batch_pseudo_target)
#optimizer1.zero_grad()
#pseu_loss.backward()
#optimizer1.step()
prec1, t, p = accuracy(batch_pred, batch_target, topk=(1,))
n = batch_data.shape[0]
objs.update(loss.data, n)
top1.update(prec1[0].data, n)
tar = np.append(tar, t.data.cpu().numpy())
pre = np.append(pre, p.data.cpu().numpy())
return top1.avg, objs.avg, tar, pre
#-------------------------------------------------------------------------------
# validate model
def valid_epoch(model, valid_loader, criterion, optimizer):
objs = AvgrageMeter()
top1 = AvgrageMeter()
tar = np.array([])
pre = np.array([])
for batch_idx, (batch_data, batch_target) in enumerate(valid_loader):
batch_data = batch_data.cuda()
batch_target = batch_target.cuda()
_, _, batch_pred = model(batch_data)
loss = criterion(batch_pred, batch_target)
prec1, t, p = accuracy(batch_pred, batch_target, topk=(1,))
n = batch_data.shape[0]
objs.update(loss.data, n)
top1.update(prec1[0].data, n)
tar = np.append(tar, t.data.cpu().numpy())
pre = np.append(pre, p.data.cpu().numpy())
return tar, pre
#-------------------------------------------------------------------------------
# test model
def test_epoch(model, test_loader, criterion, optimizer):
objs = AvgrageMeter()
top1 = AvgrageMeter()
tar = np.array([])
pre = np.array([])
for batch_idx, (batch_data, batch_target) in enumerate(test_loader):
batch_data = batch_data.cuda()
batch_target = batch_target.cuda()
_, _, batch_pred = model(batch_data)
_, pred = batch_pred.topk(1, 1, True, True)
pp = pred.squeeze()
pre = np.append(pre, pp.data.cpu().numpy())
return pre
#-------------------------------------------------------------------------------
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
#-------------------------------------------------------------------------------
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0/batch_size))
return res, target, pred.squeeze()
#-------------------------------------------------------------------------------
def output_metric(tar, pre):
matrix = confusion_matrix(tar, pre)
OA, AA_mean, Kappa, AA = cal_results(matrix)
return OA, AA_mean, Kappa, AA
#-------------------------------------------------------------------------------
def cal_results(matrix):
shape = np.shape(matrix)
number = 0
sum = 0
AA = np.zeros([shape[0]], dtype=np.float)
for i in range(shape[0]):
number += matrix[i, i]
AA[i] = matrix[i, i] / np.sum(matrix[i, :])
sum += np.sum(matrix[i, :]) * np.sum(matrix[:, i])
OA = number / np.sum(matrix)
AA_mean = np.mean(AA)
pe = sum / (np.sum(matrix) ** 2)
Kappa = (OA - pe) / (1 - pe)
return OA, AA_mean, Kappa, AA
def print_args(args):
for k, v in zip(args.keys(), args.values()):
print("{0}: {1}".format(k,v))