Releases
v0.6.0
Approximate GP model, Multi-Output Risk Measures, Bug Fixes and Performance Improvements
Compatibility
Require PyTorch >=1.9 (#1011 ).
Require GPyTorch >=1.6 (#1011 ).
New Features
New ApproximateGPyTorchModel
wrapper for various (variational) approximate GP models (#1012 ).
New SingleTaskVariationalGP
stochastic variational Gaussian Process model (#1012 ).
Support for Multi-Output Risk Measures (#906 , #965 ).
Introduce ModelList
and PosteriorList
(#829 ).
New Constraint Active Search tutorial (#1010 ).
Add additional multi-objective optimization test problems (#958 ).
Other Changes
Add covar_module
as an optional input of MultiTaskGP
models (#941 ).
Add min_range
argument to Normalize
transform to prevent division by zero (#931 ).
Add initialization heuristic for acquisition function optimization that samples around best points (#987 ).
Update initialization heuristic to perturb a subset of the dimensions of the best points if the dimension is > 20 (#988 ).
Modify apply_constraints
utility to work with multi-output objectives (#994 ).
Short-cut t_batch_mode_transform
decorator on non-tensor inputs (#991 ).
Performance Improvements
Use lazy covariance matrix in BatchedMultiOutputGPyTorchModel.posterior
(#976 ).
Fast low-rank Cholesky updates for qNoisyExpectedHypervolumeImprovement
(#747 , #995 , #996 ).
Bug Fixes
Update error handling to new PyTorch linear algebra messages (#940 ).
Avoid test failures on Ampere devices (#944 ).
Fixes to the Griewank
test function (#972 ).
Handle empty base_sample_shape in Posterior.rsample
(#986 ).
Handle NotPSDError
and hitting maxiter
in fit_gpytorch_model
(#1007 ).
Use TransformedPosterior for subclasses of GPyTorchPosterior (#983 ).
Propagate best_f
argument to qProbabilityOfImprovement
in input constructors (f5a5f8b )
You can’t perform that action at this time.