Skip to content

Commit

Permalink
Update changelog for 0.6.0 release (#1024)
Browse files Browse the repository at this point in the history
Summary: Pull Request resolved: #1024

Reviewed By: danielrjiang

Differential Revision: D32966050

Pulled By: Balandat

fbshipit-source-id: 430c22bd90999b67d31c5cf812ad9dc638e777de
  • Loading branch information
Balandat authored and facebook-github-bot committed Dec 8, 2021
1 parent deeca64 commit 9122d0a
Showing 1 changed file with 37 additions and 0 deletions.
37 changes: 37 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,42 @@

The release log for BoTorch.

## [0.6.0] - Dec 8, 2021

#### Compatibility
* Require PyTorch >=1.9 (#1011).
* Require GPyTorch >=1.6 (#1011).

#### New Features
* New `ApproximateGPyTorchModel` wrapper for various (variational) approximate GP models (#1012).
* New `SingleTaskVariationalGP` stochastic variational Gaussian Process model (#1012).
* Support for Multi-Output Risk Measures (#906, #965).
* Introduce `ModelList` and `PosteriorList` (#829).
* New Constraint Active Search tutorial (#1010).
* Add additional multi-objective optimization test problems (#958).

#### Other Changes
* Add `covar_module` as an optional input of `MultiTaskGP` models (#941).
* Add `min_range` argument to `Normalize` transform to prevent division by zero (#931).
* Add initialization heuristic for acquisition function optimization that samples around best points (#987).
* Update initialization heuristic to perturb a subset of the dimensions of the best points if the dimension is > 20 (#988).
* Modify `apply_constraints` utility to work with multi-output objectives (#994).
* Short-cut `t_batch_mode_transform` decorator on non-tensor inputs (#991).

#### Performance Improvements
* Use lazy covariance matrix in `BatchedMultiOutputGPyTorchModel.posterior` (#976).
* Fast low-rank Cholesky updates for `qNoisyExpectedHypervolumeImprovement` (#747, #995, #996).

#### Bug Fixes
* Update error handling to new PyTorch linear algebra messages (#940).
* Avoid test failures on Ampere devices (#944).
* Fixes to the `Griewank` test function (#972).
* Handle empty base_sample_shape in `Posterior.rsample` (#986).
* Handle `NotPSDError` and hitting `maxiter` in `fit_gpytorch_model` (#1007).
* Use TransformedPosterior for subclasses of GPyTorchPosterior (#983).
* Propagate `best_f` argument to `qProbabilityOfImprovement` in input constructors (f5a5f8b6dc20413e67c6234e31783ac340797a8d).


## [0.5.1] - Sep 2, 2021

#### Compatibility
Expand Down Expand Up @@ -35,6 +71,7 @@ The release log for BoTorch.
* Support negative weights for minimization objectives in `get_chebyshev_scalarization` (#884).
* Move `train_inputs` transforms to `model.train/eval` calls (#894).


## [0.5.0] - Jun 29, 2021

#### Compatibility
Expand Down

0 comments on commit 9122d0a

Please sign in to comment.