Skip to content

Tutorial code for moreh docs

Notifications You must be signed in to change notification settings

moreh-dev/quickstart

Repository files navigation

List of Contents

Quickstart

This repository provides code to experiment with training large models on Moreh's MoAI Platform. With the MoAI platform you can scale to thousands of GPU/NPUs by automatic parallelization and optimization, without any code changes.

We currently provide four LLMs; Llama3, Qwen2.5, Mistral, and Baichuan2, as well as SDXL.

Getting Started

This repository contains examples of PyTorch training codes that can be executed on the MoAI Platform. Users using Pytorch on the MoAI Platform can easily train large models without extensive effort. For more information about the MoAI Platform and detailed tutorials, please visit the Moreh Docs.

Dependency Installation

First, clone this repository and navigate to the repo directory.

git clone https://github.com/moreh-dev/quickstart
cd quickstart

After you are in the quickstart directory, install the dependency packages by following commands :

pip install -r requirements/requirements_llm.txt

Model Preparation

If you want to fine-tune the Llama2, Llama3, or Mistral models, you need access to their respective Hugging Face repositories. Please ensure you have the necessary acess before starting model training.

After obtaining access, authenticate your token with the following command:

huggingface-cli login

Fine-tuning

Activate Moreh Advanced Parallelization(AP)

The following line is added in the each code to enable AP on the MoAI Platform.

...

torch.moreh.option.enable_advanced_parallelization()

...

LLM Information

Information about the models currently supported by this repository are as follows:

Baseline Model Model Card Name
Llama3 8B meta-llama/Meta-Llama-3-8B
Llama3 70B meta-llama/Meta-Llama-3-70B
Qwen2.5 7B Qwen/Qwen2.5-7B
Mistral v0.3 7B mistralai/Mistral-7B-v0.3
Baichuan2 13B baichuan-inc/Baichuan2-13B-Base

Training

Full Fine-tuning

Run the training script to fully fine-tune the model. For example, if you want to fine-tune the llama-3 8B model:

TOKENIZERS_PARALLELISM=true accelerate launch --config_file config.yaml train_llm.py \
     --lr 0.000001 \
     --model meta-llama/Meta-Llama-3-8B \
     --dataset bitext/Bitext-customer-support-llm-chatbot-training-dataset \
     --train-batch-size 64 \
     --eval-batch-size 64 \
     --sequence-length 1024 \
     --log-interval 10 \
     --num-epochs 5 \
     --output-dir llama3-finetuned

LoRA Fine-tuning

To train the LoRA adapter only, you can give a --lora argument with LoRA config parameters.

TOKENIZERS_PARALLELISM=true accelerate launch --config_file config.yaml train_llm.py \
     --lr 0.0001 \
     --model meta-llama/Meta-Llama-3-8B \
     --dataset bitext/Bitext-customer-support-llm-chatbot-training-dataset \
     --train-batch-size 64 \
     --eval-batch-size 64 \
     --sequence-length 1024 \
     --log-interval 10 \
     --num-epochs 5 \
     --lora \
     --lora-r 64 \
     --lora-alpha 16 \
     --lora-dropout 0.1 \
     --output-dir llama3-finetuned-lora

You can change model name in --model arguments to fine-tune your desired model.

If you want to fine-tune your model with the other dataset, you can fix __call__ method of the Preprocessor class which is defined in train_utils.py to the desired format.

Inference

Perform inference by running the inference script for each model.

python inference_llm.py \ 
  --model-name-or-path ${SAVE_DIR_PATH}

If you want to perform inference with LoRA weights, add --use-lora argument to the inference script/

python inference_llm.py \ 
  --model-name-or-path ${SAVE_DIR_PATH} \ 
  --use-lora
# output example
##INSTRUCTION What is the status of my return for {{Order Number}}?

##RESPONSE Thank you for contacting us regarding the status of your return for order number {{Order Number}}. To provide you with accurate information, I kindly request you to visit the '{{Order Status}}' section on our website. There, you will find the most up-to-date details on the progress of your return. If you have any further questions or need additional assistance, please don't hesitate to let me know. I'm here to help you every step of the way!

Stable Diffusion XL

We provide fine-tuning example code for the Stable Diffusion XL model.

Training

Baseline Model Task Training Script Dataset
Stable Diffusion XL Text-to-Image Generation tutorial/train_sdxl.py lambdalabs/naruto-blip-captions

Run the training script for Stable Diffusion XL:

pip install -r requirements/requirements_sdxl.txt

UNet full fine-tuning

python train_sdxl.py \
  --epochs 20 \
  --dataset-path lambdalabs/naruto-blip-captions \
  --batch-size 16 \
  --num-workers 8 \
  --lr=1e-05 \
  --save-dir=${SAVE_DIR_PATH} \
  --log-interval 1 \
  --lr-scheduler linear 

LoRA fine-tuning(UNet)

python train_sdxl.py \
  --epochs 20 \
  --dataset-path lambdalabs/naruto-blip-captions \
  --batch-size 16 \
  --num-workers 8 \
  --lr=1e-05 \
  --save-dir=${LORA_WEIGHT_SAVE_DIR_PATH} \
  --log-interval 1 \
  --lr-scheduler linear 
  --lora \
  --rank 32

LoRA fine-tuning(UNet + Text Encoder)

python train_sdxl.py \
  --epochs 20 \
  --dataset-path lambdalabs/naruto-blip-captions \
  --batch-size 16 \
  --num-workers 8 \
  --lr=1e-05 \
  --save-dir=${LORA_WEIGHT_SAVE_DIR_PATH} \
  --log-interval 1 \
  --lr-scheduler linear 
  --lora \
  --rank 32 \
  --train-text-encoder

Inference

After training, you can proceed inference with your fine-tuned model using the following command:

python inference_sdxl.py \
  --model-name-or-path=${SAVE_DIR_PATH}

LoRA Inference

python inference_sdxl.py \
   --model-name-or-path=tabilityai/stable-diffusion-xl-base-1.0 \
   --lora-weight=${LORA_WEIGHT_SAVE_DIR_PATH}

Adjust the prompt by editing the PROMPT variable in the inference script:

...
PROMPT = "Bill Gates with a hoodie"
...

The resulting image will be saved as sdxl_result.jpg.

The image on the left shows the inference results of the model before fine-tuning, while the image on the right shows the inference results of the fine-tuned model.

drawing drawing

About

Tutorial code for moreh docs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published