-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_utils.py
151 lines (131 loc) · 5.82 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import copy
import time
import sys
from tqdm import tqdm
from loguru import logger
from peft import get_peft_model
from peft import LoraConfig
import torch
from transformers import AutoConfig
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers import TrainerCallback
class Preprocessor:
def __init__(self, model, tokenizer, seq_length):
self.tokenizer = tokenizer
self.model_name = model.config.architectures[0].lower()
self.seq_length = seq_length
def __call__(self, prompt):
if self.tokenizer.chat_template is not None:
chat = [
{
"role": "user",
"content": f"{prompt['instruction']}"
},
{
"role": "assistant",
"content": f"{prompt['response']}"
},
]
chat = self.tokenizer.apply_chat_template(chat, tokenize=False)
else:
chat = f"##INSTRUCTION {prompt['instruction']}\n\n##RESPONSE {prompt['response']}"
result = self.tokenizer(chat,
truncation=True,
max_length=self.seq_length,
padding="max_length")
result['labels'] = copy.deepcopy(result['input_ids'])
result['position_ids'] = torch.arange(0, len(result['labels']))
return result
class TrainCallback(TrainerCallback):
def __init__(self, total_steps, max_seq_length, max_str_len: int = 100):
self.training_bar = None
self.prediction_bar = None
self.max_str_len = max_str_len
self.total_train_steps = total_steps
self.warmup_checker = False
self.max_seq_length = max_seq_length
def on_train_begin(self, args, state, control, **kwargs):
if state.is_world_process_zero:
self.training_bar = tqdm(total=state.max_steps, dynamic_ncols=True, leave=False)
self.current_step = 0
self.start = time.time()
self.accum = 0
def on_step_begin(self, args, state, control, **kwargs):
self.accum += 1
def on_step_end(self, args, state, control, **kwargs):
if state.is_world_process_zero:
if state.global_step == 1:
pass
elif state.global_step == 2:
self.training_bar.update(state.global_step - self.current_step + 1)
else:
self.training_bar.update(state.global_step - self.current_step)
self.current_step = state.global_step
def on_log(self, args, state, control, logs=None, **kwargs):
if state.is_world_process_zero and self.training_bar is not None:
if not self.warmup_checker:
self.warmup_duration = time.time() - self.start
if state.is_local_process_zero:
logs["grad_norm"] = round(logs["grad_norm"], 2)
logs["learning_rate"] = round(logs["learning_rate"], 2)
self.start = time.time()
self.accum = 0
self.warmup_checker = True
shallow_logs = {"warmup_duration": round(self.warmup_duration, 2)}
self.training_bar.write(str(shallow_logs))
else:
if state.is_local_process_zero:
duration = time.time() - self.start
tps = (self.max_seq_length * args.per_device_train_batch_size *
self.accum) / duration
if not control.should_training_stop:
logs["step"] = state.global_step
logs["tps"] = round(tps, 2)
logs["duration"] = round(duration, 2)
logs["max_seq_len"] = self.max_seq_length
logs["grad_norm"] = round(logs["grad_norm"], 2)
logs["learning_rate"] = round(logs["learning_rate"], 2)
self.accum = 0
self.start = time.time()
shallow_logs = {}
for k, v in logs.items():
if isinstance(v, str) and len(v) > self.max_str_len:
shallow_logs[k] = (
f"[String too long to display, length: {len(v)} > {self.max_str_len}. "
"Consider increasing `max_str_len` if needed.]"
)
else:
shallow_logs[k] = v
_ = shallow_logs.pop("total_flos", None)
# round numbers so that it looks better in console
if "epoch" in shallow_logs:
shallow_logs["epoch"] = round(shallow_logs["epoch"], 2)
self.training_bar.write(str(shallow_logs))
def on_evaluate(self, args, state, control, **kwargs):
self.start = time.time()
self.accum = 0
if state.is_world_process_zero:
if self.prediction_bar is not None:
self.prediction_bar.close()
self.prediction_bar = None
def load_model(args):
model = AutoModelForCausalLM.from_pretrained(
args.model,
trust_remote_code=True,
)
if args.lora:
peft_config = LoraConfig(
task_type="CAUSAL_LM",
target_modules=["q_proj", "v_proj"],
r=args.lora_r,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
bias="none",
)
model = get_peft_model(model, peft_config)
tokenizer = AutoTokenizer.from_pretrained(args.model,
trust_remote_code=True,
padding_side="right")
tokenizer.pad_token = tokenizer.eos_token
return model, tokenizer