Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Integrate LLVM at e2402615a5a76d46a433dfcc1de10b38a1263c9d #3982

Merged
merged 8 commits into from
Jan 28, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion externals/llvm-project
Submodule llvm-project updated 18624 files
2 changes: 1 addition & 1 deletion externals/stablehlo
Submodule stablehlo updated 143 files
11 changes: 11 additions & 0 deletions include/torch-mlir/Conversion/TorchToTosa/TosaLegalizeUtils.h
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,17 @@ void CreateReplaceOpAndInfer(PatternRewriter &rewriter, Operation *op,
LogicalResult getAvgPool2dAccType(PatternRewriter &rewriter, Value input,
TypeAttr &accType);

// Get accumulator type for TOSA convolution ops
LogicalResult getConvOpsAccType(PatternRewriter &rewriter,
RankedTensorType inputTy,
RankedTensorType weightTy,
RankedTensorType outputTy, TypeAttr &accType);

// Temporary function to get TOSA const shape
// TODO: Remove this function when getTosaConstShape is available in
// externals/llvm-project/mlir/include/mlir/Dialect/Tosa/Utils/ConversionUtils.h
Value getTosaConstShape(PatternRewriter &rewriter, Location loc,
llvm::ArrayRef<int64_t> shape);
} // namespace tosa
} // namespace mlir

Expand Down
6 changes: 3 additions & 3 deletions lib/Conversion/TorchToLinalg/Uncategorized.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -549,7 +549,7 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
}
if (isa<AtenLogicalOrOp, AtenLogicalAndOp, AtenLogicalXorOp>(op)) {
MLIRContext *context = op->getContext();
Type floatDtype = mlir::FloatType::getF64(context);
Type floatDtype = mlir::Float64Type::get(context);
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], floatDtype);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], floatDtype);
Value zero =
Expand All @@ -569,7 +569,7 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
}
if (isa<AtenLogicalNotOp>(op)) {
MLIRContext *context = op->getContext();
Type floatDtype = mlir::FloatType::getF64(context);
Type floatDtype = mlir::Float64Type::get(context);
Value self = convertScalarToDtype(b, loc, payloadArgs[0], floatDtype);
Value zero =
b.create<arith::ConstantOp>(loc, b.getFloatAttr(floatDtype, 0));
Expand Down Expand Up @@ -1028,7 +1028,7 @@ static Value createLinalgPayloadCalculationForElementwiseOp(
Type powType = dtype;
if (payloadArgs[0].getType().isInteger() ||
payloadArgs[1].getType().isInteger())
powType = mlir::FloatType::getF64(op->getContext());
powType = mlir::Float64Type::get(op->getContext());
Value lhs = convertScalarToDtype(b, loc, payloadArgs[0], powType);
Value rhs = convertScalarToDtype(b, loc, payloadArgs[1], powType);
auto powOp = b.create<math::PowFOp>(loc, lhs, rhs);
Expand Down
65 changes: 44 additions & 21 deletions lib/Conversion/TorchToTosa/TorchToTosa.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Transforms/DialectConversion.h"
#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeCommon.h"
Expand Down Expand Up @@ -2252,6 +2253,12 @@ LogicalResult ConvertAtenOp<AtenConvolutionOp>::matchAndRewrite(
return rewriter.notifyMatchFailure(op,
"non-const dilation list unsupported");

TypeAttr accType;
if (failed(tosa::getConvOpsAccType(rewriter, inputTy, weightTy, outputTy,
accType)))
return rewriter.notifyMatchFailure(
op, "failed to get accumulator type for convolution ops");

// TOSA works in NHWC and takes OHWI (conv) / HWIM (depthwise conv) weights.
// Perform the necessary transformations.
std::optional<Value> nchwToNhwcTransposeConst =
Expand Down Expand Up @@ -2365,12 +2372,12 @@ LogicalResult ConvertAtenOp<AtenConvolutionOp>::matchAndRewrite(
// full convolution
convOpResult =
rewriter
.create<tosa::Conv2DOp>(op->getLoc(),
getTypeConverter()->convertType(convOpTy),
transposedInput, transformedWeight, bias,
rewriter.getDenseI64ArrayAttr(padding),
rewriter.getDenseI64ArrayAttr(stride),
rewriter.getDenseI64ArrayAttr(dilation))
.create<tosa::Conv2DOp>(
op->getLoc(), getTypeConverter()->convertType(convOpTy),
transposedInput, transformedWeight, bias,
rewriter.getDenseI64ArrayAttr(padding),
rewriter.getDenseI64ArrayAttr(stride),
rewriter.getDenseI64ArrayAttr(dilation), accType)
.getResult();
} else if (weightShape[1] == 1) {
// depthwise convolution
Expand All @@ -2381,7 +2388,7 @@ LogicalResult ConvertAtenOp<AtenConvolutionOp>::matchAndRewrite(
transposedInput, transformedWeight, bias,
rewriter.getDenseI64ArrayAttr(padding),
rewriter.getDenseI64ArrayAttr(stride),
rewriter.getDenseI64ArrayAttr(dilation))
rewriter.getDenseI64ArrayAttr(dilation), accType)
.getResult();
} else {
llvm_unreachable("Unhandled convolution type");
Expand Down Expand Up @@ -3909,9 +3916,11 @@ LogicalResult ConvertAtenOp<AtenBroadcastToOp>::matchAndRewrite(
}
}

auto result = rewriter.create<tosa::TileOp>(
op->getLoc(), resultType, reshapedInput,
rewriter.getDenseI64ArrayAttr(tileOpShape));
auto tileOpMultiples =
tosa::getTosaConstShape(rewriter, op->getLoc(), tileOpShape);

auto result = rewriter.create<tosa::TileOp>(op->getLoc(), resultType,
reshapedInput, tileOpMultiples);

rewriter.replaceOp(op, {result.getResult()});
}
Expand Down Expand Up @@ -4104,9 +4113,11 @@ LogicalResult ConvertAtenOp<AtenIndexSelectOp>::matchAndRewrite(
RankedTensorType::get(makeShapeLLVMCompatible(expandedIndicesShape),
rewriter.getIntegerType(32));

auto tileOpMultiples =
tosa::getTosaConstShape(rewriter, op->getLoc(), tileShape);

auto expandedIndices = rewriter.create<tosa::TileOp>(
op->getLoc(), tileType, reshapedIndices.getResult(),
rewriter.getDenseI64ArrayAttr(tileShape));
op->getLoc(), tileType, reshapedIndices.getResult(), tileOpMultiples);

// convert torch style index and dim into tf style indices
// tensor<[1,4,2],si64> -> tensor<[1,4,2,3],si64>
Expand Down Expand Up @@ -4445,17 +4456,23 @@ LogicalResult ConvertAtenOp<AtenIndexTensorHackedTwinOp>::matchAndRewrite(
if (needsTiling) {
auto idxType =
dyn_cast<RankedTensorType>(indicesTfConcatTensors[i].getType());

// indicesTfConcatTensors has a trailing [1] dim for the final concat.
auto maxRankMaxDimShapeTf(maxRankMaxDimShape);
maxRankMaxDimShapeTf.push_back(1);

auto tileOpShapeTf(tileOpShape);
tileOpShapeTf.push_back(1);

auto tileOutputTy = RankedTensorType::get(maxRankMaxDimShapeTf,
idxType.getElementType());
auto reshapedIdxTensor = indicesTfConcatTensors[i];

auto tileOpMultiples =
tosa::getTosaConstShape(rewriter, op->getLoc(), tileOpShapeTf);

indicesTfConcatTensors[i] = rewriter.create<tosa::TileOp>(
op->getLoc(), tileOutputTy, reshapedIdxTensor,
rewriter.getDenseI64ArrayAttr(tileOpShapeTf));
op->getLoc(), tileOutputTy, reshapedIdxTensor, tileOpMultiples);
}

// Every index tensor now has the same rank and shape
Expand Down Expand Up @@ -6023,12 +6040,14 @@ class ConvertAtenFillOp : public OpConversionPattern<AtenOpT> {
op->getLoc(), fillValueMatchedInputRankType, fillValue,
rewriter.getDenseI64ArrayAttr(fillValueMatchedInputRankShape));

auto tileOpMultiples =
tosa::getTosaConstShape(rewriter, op->getLoc(), outType.getShape());

fillValueTargetTensor = rewriter.create<tosa::TileOp>(
op->getLoc(),
RankedTensorType::get(makeShapeTorchCompatible(outType.getShape()),
fillValueElemTy),
fillValueMatchedInputRankTensor.getResult(),
makeShapeTorchCompatible(outType.getShape()));
fillValueMatchedInputRankTensor.getResult(), tileOpMultiples);
} else {
if (failed(torchScalarToTosaTensor(
rewriter, op, op.getValue(), fillValueTargetTensor, outElemTy,
Expand Down Expand Up @@ -6179,7 +6198,7 @@ LogicalResult ConvertAtenOp<AtenConstantPadNdOp>::matchAndRewrite(
}

DenseElementsAttr paddingAttr = DenseIntElementsAttr::get(
RankedTensorType::get({rank, 2}, rewriter.getI64Type()),
RankedTensorType::get({2 * rank}, rewriter.getI64Type()),
translatePadsList);

Value padsList1 = rewriter.create<mlir::tosa::ConstOp>(
Expand Down Expand Up @@ -7836,9 +7855,11 @@ LogicalResult ConvertAtenOp<AtenOuterOp>::matchAndRewrite(
resultType.getElementType()),
self, rewriter.getDenseI64ArrayAttr(resultShapeIndex1Replaced));

auto selfTileOpMultiples = tosa::getTosaConstShape(rewriter, op->getLoc(),
resultShapeIndex0Replaced);

auto selfTiled = rewriter.create<tosa::TileOp>(
op->getLoc(), resultType, selfReshaped.getResult(),
rewriter.getDenseI64ArrayAttr(resultShapeIndex0Replaced));
op->getLoc(), resultType, selfReshaped.getResult(), selfTileOpMultiples);

// Reshape and tile vec2 to shape {resultShape[0], vec2Shape[0]}
auto vec2Reshaped = rewriter.create<tosa::ReshapeOp>(
Expand All @@ -7847,9 +7868,11 @@ LogicalResult ConvertAtenOp<AtenOuterOp>::matchAndRewrite(
resultType.getElementType()),
vec2, rewriter.getDenseI64ArrayAttr(resultShapeIndex0Replaced));

auto vec2TileOpMultiples = tosa::getTosaConstShape(rewriter, op->getLoc(),
resultShapeIndex1Replaced);

auto vec2Tiled = rewriter.create<tosa::TileOp>(
op->getLoc(), resultType, vec2Reshaped.getResult(),
rewriter.getDenseI64ArrayAttr(resultShapeIndex1Replaced));
op->getLoc(), resultType, vec2Reshaped.getResult(), vec2TileOpMultiples);

auto result =
tosa::createMulOpAndCast(rewriter, op, resultType, selfTiled.getResult(),
Expand Down
6 changes: 4 additions & 2 deletions lib/Conversion/TorchToTosa/TosaLegalizeCommon.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
//===----------------------------------------------------------------------===//

#include "torch-mlir/Conversion/TorchToTosa/TosaLegalizeCommon.h"
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
#include "torch-mlir/Conversion/Utils/Utils.h"
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"

Expand Down Expand Up @@ -566,11 +567,12 @@ std::optional<Value> convertScatterNdOp(PatternRewriter &rewriter,

// [0] -> [0,0,0]
SmallVector<int64_t, 1> tileShape({W}); // {3}
auto tileOpMultiples =
tosa::getTosaConstShape(rewriter, op->getLoc(), tileShape);
auto tosaFillValuesTileOp = tosa::CreateOpAndInfer<tosa::TileOp>(
rewriter, op->getLoc(),
GetTypeFromTensorShape(tileShape, fillValuesType.getElementType()),
tosaFillValuesOneReshapeOp.getResult(),
rewriter.getDenseI64ArrayAttr(tileShape));
tosaFillValuesOneReshapeOp.getResult(), tileOpMultiples);

// [0,0,0] -> [[0,0,0]]
SmallVector<int64_t, 2> newTosaFillValuesShape({N, W}); // {1,3}
Expand Down
58 changes: 58 additions & 0 deletions lib/Conversion/TorchToTosa/TosaLegalizeUtils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -454,5 +454,63 @@ LogicalResult getAvgPool2dAccType(PatternRewriter &rewriter, Value input,
return success();
}

// Get accumulator type for TOSA convolution ops
LogicalResult getConvOpsAccType(PatternRewriter &rewriter,
RankedTensorType inputTy,
RankedTensorType weightTy,
RankedTensorType outputTy, TypeAttr &accType) {
auto inputElemTy = inputTy.getElementType();
auto weightElemTy = weightTy.getElementType();
auto outputElemTy = outputTy.getElementType();

auto quantTy = dyn_cast<quant::QuantizedType>(inputElemTy);
if (quantTy)
inputElemTy = quantTy.getStorageType();

// Get TOSA conv ops acc type based on input, weight, and output types
// according to the spec:
// https://www.mlplatform.org/tosa/tosa_spec.html#_conv2d
// https://www.mlplatform.org/tosa/tosa_spec.html#_depthwise_conv2d
// https://www.mlplatform.org/tosa/tosa_spec.html#_conv3d
//
// For undefined dtypes in TOSA like I64 and F64, acc_type will be set to the
// output type but does not offer any guarantee on the numerical precision
// since such cases will fail TOSA validation.
if ((inputElemTy.isF32() && weightElemTy.isF32() && outputElemTy.isF32()) ||
(inputElemTy.isF16() && weightElemTy.isF16() && outputElemTy.isF16()) ||
(inputElemTy.isBF16() && weightElemTy.isBF16() &&
outputElemTy.isBF16())) {
accType = mlir::TypeAttr::get(rewriter.getF32Type());
} else if (inputElemTy.isInteger(8) &&
(weightElemTy.isInteger(8) || weightElemTy.isInteger(4)) &&
outputElemTy.isInteger(32)) {
accType = mlir::TypeAttr::get(rewriter.getIntegerType(32));
} else if (inputElemTy.isInteger(16) && weightElemTy.isInteger(8) &&
outputElemTy.isInteger(48)) {
accType = mlir::TypeAttr::get(rewriter.getIntegerType(48));
} else if ((inputElemTy.isFloat8E4M3() && weightElemTy.isFloat8E4M3() &&
outputElemTy.isF16()) ||
(inputElemTy.isFloat8E5M2() && weightElemTy.isFloat8E5M2() &&
outputElemTy.isF16())) {
accType = mlir::TypeAttr::get(rewriter.getF16Type());
} else {
accType = mlir::TypeAttr::get(outputElemTy);
}

return success();
}

// Temporary function to get TOSA const shape
// TODO: Remove this function when getTosaConstShape is available in
// externals/llvm-project/mlir/include/mlir/Dialect/Tosa/Utils/ConversionUtils.h
Value getTosaConstShape(PatternRewriter &rewriter, Location loc,
llvm::ArrayRef<int64_t> shape) {
auto attr = rewriter.getIndexTensorAttr(shape);
auto type = mlir::tosa::shapeType::get(rewriter.getContext(), shape.size());
mlir::Operation *mlir_op =
rewriter.create<tosa::ConstShapeOp>(loc, type, attr);
return mlir_op->getResult(0);
}

} // namespace tosa
} // namespace mlir
50 changes: 49 additions & 1 deletion lib/Dialect/TMTensor/Transforms/Bufferize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,14 @@ class BufferizeAnyTMTensorOp : public OpInterfaceConversionPattern<TMTensorOp> {
};

namespace {

static Value materializeToTensor(OpBuilder &builder, TensorType type,
ValueRange inputs, Location loc) {
assert(inputs.size() == 1);
assert(isa<BaseMemRefType>(inputs[0].getType()));
return builder.create<bufferization::ToTensorOp>(loc, type, inputs[0]);
}

/// Converts TMTensor operations that work on tensor-type operands or results to
/// work on buffers.
struct TMTensorBufferizePass
Expand All @@ -133,7 +141,47 @@ struct TMTensorBufferizePass
void runOnOperation() override {
MLIRContext &context = getContext();
ConversionTarget target(context);
bufferization::BufferizeTypeConverter typeConverter;
// Since the `BufferizeTypeConverter` has been removed here
// https://github.com/llvm/llvm-project/commit/2ff2e871f5e632ea493efaf4f2192f8b18a54ab1,
// hence we have inlined the converter here.
TypeConverter typeConverter;
typeConverter.addConversion([](Type type) { return type; });
// Convert RankedTensorType to MemRefType.
typeConverter.addConversion([](RankedTensorType type) -> Type {
return MemRefType::get(type.getShape(), type.getElementType());
});
// Convert UnrankedTensorType to UnrankedMemRefType.
typeConverter.addConversion([](UnrankedTensorType type) -> Type {
return UnrankedMemRefType::get(type.getElementType(), 0);
});
typeConverter.addArgumentMaterialization(materializeToTensor);
typeConverter.addSourceMaterialization(materializeToTensor);
typeConverter.addTargetMaterialization([](OpBuilder &builder,
BaseMemRefType type,
ValueRange inputs,
Location loc) -> Value {
assert(inputs.size() == 1 && "expected exactly one input");
if (auto inputType = dyn_cast<MemRefType>(inputs[0].getType())) {
// MemRef to MemRef cast.
assert(inputType != type && "expected different types");
// Ranked to unranked casts must be explicit.
auto rankedDestType = dyn_cast<MemRefType>(type);
if (!rankedDestType)
return nullptr;
bufferization::BufferizationOptions options;
options.bufferAlignment = 0;
FailureOr<Value> replacement = castOrReallocMemRefValue(
builder, inputs[0], rankedDestType, options);
if (failed(replacement))
return nullptr;
return *replacement;
}
if (isa<TensorType>(inputs[0].getType())) {
// Tensor to MemRef cast.
return builder.create<bufferization::ToMemrefOp>(loc, type, inputs[0]);
}
llvm_unreachable("only tensor/memref input types supported");
});

// Mark all Standard operations legal.
target.addLegalDialect<arith::ArithDialect, func::FuncDialect,
Expand Down
3 changes: 1 addition & 2 deletions lib/Dialect/TMTensor/Transforms/ConvertToLoops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -110,8 +110,7 @@ struct TMTensorToLoopsPass : public TMTensorToLoopsBase<TMTensorToLoopsPass> {

RewritePatternSet patterns(context);
patterns.insert<ScalarLoopOpInterfaceLowerToLoopsPattern>(context);
if (failed(applyPatternsAndFoldGreedily(getOperation(),
std::move(patterns)))) {
if (failed(applyPatternsGreedily(getOperation(), std::move(patterns)))) {
return signalPassFailure();
}
}
Expand Down
Loading
Loading