Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed issue with PretokenizeRunner with streaming=True #442

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 22 additions & 8 deletions sae_lens/pretokenize_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,16 +99,30 @@ def process_examples(examples: dict[str, list[str]]):
)
}

tokenized_dataset = dataset.map(
process_examples,
batched=True,
batch_size=cfg.pretokenize_batch_size,
num_proc=cfg.num_proc,
remove_columns=dataset.column_names,
)
if cfg.streaming:
tokenized_dataset = dataset.map(
process_examples,
batched=True,
batch_size=cfg.pretokenize_batch_size,
remove_columns=dataset.column_names,
)
else:
tokenized_dataset = dataset.map(
process_examples,
batched=True,
batch_size=cfg.pretokenize_batch_size,
num_proc=cfg.num_proc,
remove_columns=dataset.column_names,
)

if cfg.shuffle:
tokenized_dataset = tokenized_dataset.shuffle(seed=cfg.seed)
tokenized_dataset.set_format(type="torch", columns=["input_ids"])

if cfg.streaming:
tokenized_dataset = tokenized_dataset.with_format(type="torch")
else:
tokenized_dataset.set_format(type="torch", columns=["input_ids"])

return tokenized_dataset


Expand Down
30 changes: 27 additions & 3 deletions tests/training/test_pretokenize_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,12 @@
from typing import Any, cast

import pytest
from datasets import Dataset
from datasets import Dataset, IterableDataset
from transformers import AutoTokenizer, PreTrainedTokenizerBase

from sae_lens import __version__
from sae_lens.config import PretokenizeRunnerConfig
from sae_lens.pretokenize_runner import pretokenize_dataset, pretokenize_runner
from sae_lens.pretokenize_runner import PretokenizeRunner, pretokenize_dataset


@pytest.fixture
Expand Down Expand Up @@ -157,7 +157,7 @@ def test_pretokenize_runner_save_dataset_locally(tmp_path: Path):
begin_batch_token="bos",
sequence_separator_token="eos",
)
dataset = pretokenize_runner(cfg)
dataset = PretokenizeRunner(cfg).run()
assert save_path.exists()
loaded_dataset = Dataset.load_from_disk(str(save_path))
assert len(dataset) == len(loaded_dataset)
Expand All @@ -172,3 +172,27 @@ def test_pretokenize_runner_save_dataset_locally(tmp_path: Path):
assert metadata_dict["begin_sequence_token"] is None
assert metadata_dict["sequence_separator_token"] == "eos"
assert metadata_dict["sae_lens_version"] == __version__


def test_pretokenize_runner_streaming_dataset():
cfg = PretokenizeRunnerConfig(
tokenizer_name="gpt2",
context_size=10,
num_proc=2,
dataset_path="NeelNanda/c4-10k",
split="train",
streaming=True,
)
dataset = PretokenizeRunner(cfg).run()
assert isinstance(dataset, IterableDataset)

cfg = PretokenizeRunnerConfig(
tokenizer_name="gpt2",
context_size=10,
num_proc=2,
dataset_path="NeelNanda/c4-10k",
split="train",
streaming=False,
)
dataset = PretokenizeRunner(cfg).run()
assert not isinstance(dataset, IterableDataset)