Skip to content

fix backward feature selection for fixed_steps #34

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 9 additions & 8 deletions ISLP/models/strategy.py
Original file line number Diff line number Diff line change
Expand Up @@ -403,7 +403,7 @@ def first_peak(model_spec,
initial_terms_.append(term)
initial_state = tuple(initial_terms_)
else:
initial_state = ()
initial_state = () if direction == 'forward' else list(model_spec.terms)

if not parsimonious:
_postprocess = _postprocess_best
Expand Down Expand Up @@ -455,27 +455,28 @@ def fixed_steps(model_spec,

"""

n_terms = n_steps if direction == 'forward' else len(list(model_spec.terms)) - n_steps
step = Stepwise(model_spec,
direction=direction,
min_terms=n_steps,
max_terms=n_steps,
min_terms=n_terms,
max_terms=n_terms,
lower_terms=lower_terms,
upper_terms=upper_terms,
validator=validator)

# pick an initial state

if initial_terms is not None:
if initial_terms is not None and initial_terms != []:
initial_terms_ = []
mm_terms = list(model_spec.terms)
for term in initial_terms:
mm_terms = list(model_spec.terms)
if term in mm_terms:
idx = mm_terms.index(term)
term = model_spec.terms_[idx]
initial_terms_.append(term)
initial_state = tuple(initial_terms_)
else:
initial_state = ()
initial_state = () if direction == 'forward' else list(model_spec.terms_)

if not step.lower_terms.issubset(initial_state):
raise ValueError('initial_state should contain %s' % str(step.lower_terms))
Expand All @@ -486,8 +487,8 @@ def fixed_steps(model_spec,
return Strategy(initial_state,
step.candidate_states,
model_spec.build_submodel,
partial(fixed_steps, n_steps),
partial(_postprocess_fixed_steps, n_steps))
partial(fixed_steps, n_terms),
partial(_postprocess_fixed_steps, n_terms))


def min_max(model_spec,
Expand Down
40 changes: 39 additions & 1 deletion tests/models/test_selection.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,45 @@ def test_step():
print(step_selector.results_)
print(step_selector.selected_state_)
print('huh')


def test_fixed_steps_backward():

n, p = 100, 7
rng = np.random.default_rng(1)
X = rng.standard_normal((n, p))
Y = rng.standard_normal(n)
D = pd.DataFrame(X, columns=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'][:p])
D['A'] = pd.Categorical(rng.choice(range(5), (n,), replace=True))

model_spec = MS(list(D.columns))
model_spec.fit(D)

num_steps = 4
strategy = Stepwise.fixed_steps(model_spec,
num_steps,
direction='backward')

step_selector = FeatureSelector(LinearRegression(),
strategy,
cv=3)
step_selector.fit(D, Y)

print("selected", [term.name for term in step_selector.selected_state_])
assert len(step_selector.selected_state_) == (len(model_spec.terms) - num_steps)

num_steps = 2
strategy = Stepwise.fixed_steps(model_spec,
num_steps,
direction='backward')

step_selector = FeatureSelector(LinearRegression(),
strategy,
cv=None)
step_selector.fit(D, Y)

print("selected", [term.name for term in step_selector.selected_state_])
assert len(step_selector.selected_state_) == (len(model_spec.terms) - num_steps)

def test_constraint():

rng = np.random.default_rng(3)
Expand Down