Skip to content
Hugo van der Sanden edited this page Apr 11, 2024 · 5 revisions

The C and Perl code in this repository provides a variety of resources aimed at finding values of OEIS sequences such as A292580, the values $D(n,k)$ representing the smallest chain of exactly $k$ consecutive integers that each have $n$ divisors. I.e. $D(n,k) = \min d: \forall i: 0 <= i < k \implies \tau(d + i) = n$. (Note that in the sequence page it refers to $T(n,k) = D(2n,k)$, since when $n$ is odd only $D(n,1)$ exists.)

The Perl code (which also includes some inline C) searches for values of this sequence and several similar sequences of arithmetic progressions ("AP") of numbers sharing divisor-related characteristics. Most of the Perl programs accept a "type" option (-y<type>) that specifies which sequence type to consider:

  • option -yo, module Type::OneSeq, $\min d: \forall i: 0 &lt;= i &lt; k \implies \tau(d + i) = n$
    • C executable pcoul
  • option -yt, module Type::TauSeq, $\min d: \forall i: 0 &lt;= i &lt; k \implies \tau(n + id) = \tau(n)$
  • option -ya, module Type::AddSeq, $\min d: \forall i: 0 &lt;= i &lt; k \implies \tau(d + in) = n$
    • C executable pcaul
  • option -yr, module Type::Track, $\min d: \forall i: 0 &lt;= i &lt; k \implies \tau(n+i) = \tau(d+i), d \ne n$
    • C executable pcrul
  • option -ys, module Type::Semip, $\min d: \forall i: 0 &lt;= i &lt; k \implies d + in$ is a semiprime (of the form $pq$ or $p^2$)
  • option -yd, module Type::AscDPrime, AP with minimum start point, fixed difference, $i$th element has $i$ distinct prime factors
  • option -yn, module Type::AscNPrime, AP with minimum start point, fixed difference, $i$th element has $i$ prime factors with multiplicity
Clone this wiki locally