Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update import paths of google genai modules to fix pyright errors #174

Merged
merged 3 commits into from
Feb 7, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/pytest.yml
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ jobs:
# This workflow contains a single job called "pytest"
pytest:
# The type of runner that the job will run on
runs-on: ubuntu-latest
runs-on: ubuntu-latest-4-cores

# Steps represent a sequence of tasks that will be executed as part of the job
steps:
Expand Down
12 changes: 7 additions & 5 deletions src/langcheck/metrics/eval_clients/_gemini.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,10 @@
from typing import Any

import google.ai.generativelanguage as glm
import google.generativeai as genai
import torch
from google.generativeai.client import configure
from google.generativeai.embedding import embed_content
from google.generativeai.generative_models import GenerativeModel

from langcheck.utils.progress_bar import tqdm_wrapper

Expand All @@ -20,7 +22,7 @@ class GeminiEvalClient(EvalClient):

def __init__(
self,
model: genai.GenerativeModel | None = None,
model: GenerativeModel | None = None,
model_args: dict[str, Any] | None = None,
generate_content_args: dict[str, Any] | None = None,
embed_model_name: str | None = None,
Expand Down Expand Up @@ -49,9 +51,9 @@ def __init__(
if model:
self._model = model
else:
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
configure(api_key=os.getenv("GOOGLE_API_KEY"))
model_args = model_args or {}
self._model = genai.GenerativeModel(**model_args)
self._model = GenerativeModel(**model_args)

self._generate_content_args = generate_content_args or {}
self._embed_model_name = embed_model_name
Expand Down Expand Up @@ -234,7 +236,7 @@ def __init__(self, embed_model_name: str | None):
def _embed(self, inputs: list[str]) -> torch.Tensor:
"""Embed the inputs using the Gemini API."""
# Embed the inputs
embed_response = genai.embed_content(
embed_response = embed_content(
model=self.embed_model_name, content=inputs
)

Expand Down
38 changes: 22 additions & 16 deletions tests/metrics/eval_clients/test_gemini.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,10 @@ def test_get_text_response_gemini():
mock_response.candidates = [Mock(finish_reason=1)]
# Calling the google.generativeai.GenerativeModel.generate_content method
# requires a Google API key, so we mock the return value instead
with patch("google.generativeai.GenerativeModel.generate_content",
return_value=mock_response):

with patch(
"google.generativeai.GenerativeModel.generate_content",
return_value=mock_response,
):
# Set the necessary env vars for the GeminiEvalClient
os.environ["GOOGLE_API_KEY"] = "dummy_key"
client = GeminiEvalClient()
Expand All @@ -41,28 +42,30 @@ def test_get_float_score_gemini(language):
mock_response.text = short_assessment_result

class FunctionCallMock(Mock):

@classmethod
def to_dict(cls, instance):
return {"args": {"assessment": short_assessment_result}}

mock_response.candidates = [
Mock(finish_reason=1,
content=Mock(parts=[Mock(function_call=FunctionCallMock())]))
Mock(
finish_reason=1,
content=Mock(parts=[Mock(function_call=FunctionCallMock())]),
)
]

# Calling the google.generativeai.GenerativeModel.generate_content method
# requires a Google API key, so we mock the return value instead
with patch("google.generativeai.GenerativeModel.generate_content",
return_value=mock_response):

with patch(
"google.generativeai.GenerativeModel.generate_content",
return_value=mock_response,
):
# Set the necessary env vars for the GeminiEvalClient
os.environ["GOOGLE_API_KEY"] = "dummy_key"
client = GeminiEvalClient()

scores = client.get_float_score("dummy_metric", language,
unstructured_assessment_result,
score_map)
scores = client.get_float_score(
"dummy_metric", language, unstructured_assessment_result, score_map
)
assert len(scores) == len(unstructured_assessment_result)
for score in scores:
assert score == 1.0
Expand All @@ -73,14 +76,17 @@ def test_similarity_scorer_gemini():

# Calling the google.generativeai.embed_content method requires a Google
# API key, so we mock the return value instead
with patch("google.generativeai.embed_content",
Mock(return_value=mock_embedding_response)):
with patch(
"langcheck.metrics.eval_clients._gemini.embed_content",
Mock(return_value=mock_embedding_response),
):
# Set the necessary env vars for the GeminiEvalClient
os.environ["GOOGLE_API_KEY"] = "dummy_key"
gemini_client = GeminiEvalClient()
scorer = gemini_client.similarity_scorer()
# Since the mock embeddings are the same for the generated and reference
# outputs, the similarity score should be 1.
score = scorer.score(["The cat sat on the mat."],
["The cat sat on the mat."])
score = scorer.score(
["The cat sat on the mat."], ["The cat sat on the mat."]
)
assert 0.99 <= score[0] <= 1