Skip to content

Commit

Permalink
Updated comments for all new GR regression tests (including all black…
Browse files Browse the repository at this point in the history
… hole magnetosphere tests for the general relativistic Maxwell equations, ultra-relativistic Euler tests, coupled fluid-Einstein tests in plane-symmetric spacetimes, and all test variants in the tetrad basis).
  • Loading branch information
JonathanGorard committed Oct 10, 2024
1 parent 1717ab0 commit bb312c6
Show file tree
Hide file tree
Showing 20 changed files with 138 additions and 0 deletions.
7 changes: 7 additions & 0 deletions regression/rt_gr_bhl_spinning_tetrad.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
// 2D Bondi-Hoyle-Lyttleton accretion problem onto a non-static (Kerr) black hole, for the general relativistic Euler equations in the tetrad basis.
// Input parameters describe wind accretion of a cold relativistic gas onto a spinning black hole.
// Based on the analytical solution for stiff relativistic fluids presented in the article:
// L. I. Petrich, S. L. Shapiro and S. A. Teukolsky (1988), "Accretion onto a moving black hole: An exact solution",
// Physical Review Letters, Volume 60 (18): 1781-1784.
// https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.60.1781

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
7 changes: 7 additions & 0 deletions regression/rt_gr_bhl_static_tetrad.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
// 2D Bondi-Hoyle-Lyttleton accretion problem onto a static (Schwarzschild) black hole, for the general relativistic Euler equations in the tetrad basis.
// Input parameters describe wind accretion of a cold relativistic gas onto a non-rotating black hole.
// Based on the analytical solution for stiff relativistic fluids presented in the article:
// L. I. Petrich, S. L. Shapiro and S. A. Teukolsky (1988), "Accretion onto a moving black hole: An exact solution",
// Physical Review Letters, Volume 60 (18): 1781-1784.
// https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.60.1781

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
7 changes: 7 additions & 0 deletions regression/rt_gr_bz_monopole_fast.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
// 2D Blandford-Znajek magnetosphere problem for a rapidly-rotating (Kerr) black hole, for the general relativistic Maxwell equations.
// Input parameters describe a (purely radial) monopole magnetic field surrounding a rapidly-rotating black hole.
// Based on the perturbative analytical solution for force-free electrodynamics presented in the article:
// R. D. Blandford and R. L. Znajek (1977), "Electromagnetic extraction of energy from Kerr black holes",
// Monthly Notices of the Royal Astronomical Society, Volume 179 (3): 433-456.
// https://academic.oup.com/mnras/article/179/3/433/962905

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
7 changes: 7 additions & 0 deletions regression/rt_gr_bz_monopole_fast_tetrad.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
// 2D Blandford-Znajek magnetosphere problem for a rapidly-rotating (Kerr) black hole, for the general relativistic Maxwell equations in the tetrad basis.
// Input parameters describe a (purely radial) monopole magnetic field surrounding a rapidly-rotating black hole.
// Based on the perturbative analytical solution for force-free electrodynamics presented in the article:
// R. D. Blandford and R. L. Znajek (1977), "Electromagnetic extraction of energy from Kerr black holes",
// Monthly Notices of the Royal Astronomical Society, Volume 179 (3): 433-456.
// https://academic.oup.com/mnras/article/179/3/433/962905

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
7 changes: 7 additions & 0 deletions regression/rt_gr_bz_monopole_slow.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
// 2D Blandford-Znajek magnetosphere problem for a slowly-rotating (Kerr) black hole, for the general relativistic Maxwell equations.
// Input parameters describe a (purely radial) monopole magnetic field surrounding a slowly-rotating black hole.
// Based on the perturbative analytical solution for force-free electrodynamics presented in the article:
// R. D. Blandford and R. L. Znajek (1977), "Electromagnetic extraction of energy from Kerr black holes",
// Monthly Notices of the Royal Astronomical Society, Volume 179 (3): 433-456.
// https://academic.oup.com/mnras/article/179/3/433/962905

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
7 changes: 7 additions & 0 deletions regression/rt_gr_bz_monopole_slow_tetrad.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
// 2D Blandford-Znajek magnetosphere problem for a slowly-rotating (Kerr) black hole, for the general relativistic Maxwell equations in the tetrad basis.
// Input parameters describe a (purely radial) monopole magnetic field surrounding a slowly-rotating black hole.
// Based on the perturbative analytical solution for force-free electrodynamics presented in the article:
// R. D. Blandford and R. L. Znajek (1977), "Electromagnetic extraction of energy from Kerr black holes",
// Monthly Notices of the Royal Astronomical Society, Volume 179 (3): 433-456.
// https://academic.oup.com/mnras/article/179/3/433/962905

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
6 changes: 6 additions & 0 deletions regression/rt_gr_current_sheet.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,9 @@
// 1D current sheet Riemann problem for the general relativistic Maxwell equations.
// Input parameters taken from the initial conditions in Section C3.2 (current sheet), from the article:
// S. S. Komissarov (2004), "Electrodynamics of black hole magnetospheres",
// Monthly Notices of the Royal Astronomical Society, Volume 350 (2): 427-448.
// https://arxiv.org/abs/astro-ph/0402403

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
6 changes: 6 additions & 0 deletions regression/rt_gr_current_sheet_tetrad.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,9 @@
// 1D current sheet Riemann problem for the general relativistic Maxwell equations in the tetrad basis.
// Input parameters taken from the initial conditions in Section C3.2 (current sheet), from the article:
// S. S. Komissarov (2004), "Electrodynamics of black hole magnetospheres",
// Monthly Notices of the Royal Astronomical Society, Volume 350 (2): 427-448.
// https://arxiv.org/abs/astro-ph/0402403

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
6 changes: 6 additions & 0 deletions regression/rt_gr_einstein_plane_shock.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,9 @@
// Shock tube test on a plane-symmetric Gowdy spacetime for the coupled fluid-Einstein equations, assuming an ultra-relativistic equation of state.
// Input parameters taken from the initial conditions in Section 9 (Riemann problem 1), from the article:
// A. P. Barnes, P. G. Lefloch, B. G. Schmidt and J. M. Stewart (2004), "The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes",
// Classical and Quantum Gravity, Volume 21 (22): 5043.
// https://iopscience.iop.org/article/10.1088/0264-9381/21/22/003

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
6 changes: 6 additions & 0 deletions regression/rt_gr_mild_shock_tetrad.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,9 @@
// Mildly relativistic blast wave test for the general relativistic Euler equations in the tetrad basis.
// Input parameters taken from the initial conditions in Section 4.1 (blast wave 1), from the article:
// L. Del Zanna and N. Bucciantini (2002), "An efficient shock-cpaturing central-type scheme for multidimensional relativistic flows. I. Hydrodynamics",
// Astronomy and Astrophysics, Volume 390 (3): 1177-1186.
// https://arxiv.org/abs/astro-ph/0205290

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
8 changes: 8 additions & 0 deletions regression/rt_gr_ultra_rel_bhl_spinning.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,11 @@
// 2D Bondi-Hoyle-Lyttleton ultra-relativistic accretion problem onto a non-static (Kerr) black hole, for the general relativistic Euler equations,
// assuming a stiff equation of state.
// Input parameters describe wind accretion of an ultra-relativistic gas onto a spinning black hole.
// Based on the analytical solution for stiff relativistic fluids presented in the article:
// L. I. Petrich, S. L. Shapiro and S. A. Teukolsky (1988), "Accretion onto a moving black hole: An exact solution",
// Physical Review Letters, Volume 60 (18): 1781-1784.
// https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.60.1781

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
8 changes: 8 additions & 0 deletions regression/rt_gr_ultra_rel_bhl_spinning_tetrad.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,11 @@
// 2D Bondi-Hoyle-Lyttleton ultra-relativistic accretion problem onto a non-static (Kerr) black hole, for the general relativistic Euler equations in the tetrad basis,
// assuming a stiff equation of state.
// Input parameters describe wind accretion of an ultra-relativistic gas onto a spinning black hole.
// Based on the analytical solution for stiff relativistic fluids presented in the article:
// L. I. Petrich, S. L. Shapiro and S. A. Teukolsky (1988), "Accretion onto a moving black hole: An exact solution",
// Physical Review Letters, Volume 60 (18): 1781-1784.
// https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.60.1781

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
8 changes: 8 additions & 0 deletions regression/rt_gr_ultra_rel_bhl_static.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,11 @@
// 2D Bondi-Hoyle-Lyttleton ultra-relativistic accretion problem onto a static (Schwarzschild) black hole, for the general relativistic Euler equations,
// assuming a stiff equation of state.
// Input parameters describe wind accretion of an ultra-relativistic gas onto a non-rotating black hole.
// Based on the analytical solution for stiff relativistic fluids presented in the article:
// L. I. Petrich, S. L. Shapiro and S. A. Teukolsky (1988), "Accretion onto a moving black hole: An exact solution",
// Physical Review Letters, Volume 60 (18): 1781-1784.
// https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.60.1781

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
8 changes: 8 additions & 0 deletions regression/rt_gr_ultra_rel_bhl_static_tetrad.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,11 @@
// 2D Bondi-Hoyle-Lyttleton ultra-relativistic accretion problem onto a static (Schwarzschild) black hole, for the general relativistic Euler equations in the tetrad basis,
// assuming a stiff equation of state.
// Input parameters describe wind accretion of an ultra-relativistic gas onto a non-rotating black hole.
// Based on the analytical solution for stiff relativistic fluids presented in the article:
// L. I. Petrich, S. L. Shapiro and S. A. Teukolsky (1988), "Accretion onto a moving black hole: An exact solution",
// Physical Review Letters, Volume 60 (18): 1781-1784.
// https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.60.1781

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
6 changes: 6 additions & 0 deletions regression/rt_gr_ultra_rel_shock.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,9 @@
// Non-zero tangential velocity Riemann problem for the general relativistic Euler equations, assuming an ultra-relativistic equation of state.
// Input parameters taken from the initial conditions in Figure 3 (Riemann problem 1), from the article:
// P. Mach and M. Piętka (2010), "Exact solution of the hydrodynamical Riemann problem with nonzero tangential velocities and the ultrarelativistic equation of state",
// Physical Review E, Volume 81 (4): 046313.
// https://arxiv.org/abs/0905.0349

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
6 changes: 6 additions & 0 deletions regression/rt_gr_ultra_rel_shock_tetrad.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,9 @@
// Non-zero tangential velocity Riemann problem for the general relativistic Euler equations in the tetrad basis, assuming an ultra-relativistic equation of state.
// Input parameters taken from the initial conditions in Figure 3 (Riemann problem 1), from the article:
// P. Mach and M. Piętka (2010), "Exact solution of the hydrodynamical Riemann problem with nonzero tangential velocities and the ultrarelativistic equation of state",
// Physical Review E, Volume 81 (4): 046313.
// https://arxiv.org/abs/0905.0349

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
7 changes: 7 additions & 0 deletions regression/rt_gr_wald_magnetosphere_spinning.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
// 2D Wald magnetosphere problem for a non-static (Kerr) black hole, for the general relativistic Maxwell equations.
// Input parameters describe a uniform magnetic field surrounding rotating black hole.
// Based on the analytical solution for force-free electrodynamics presented in the article:
// R. M. Wald (1974), "Black hole in a uniform magnetic field",
// Physical Review D, Volume 10 (6): 1680.
// https://journals.aps.org/prd/abstract/10.1103/PhysRevD.10.1680

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
7 changes: 7 additions & 0 deletions regression/rt_gr_wald_magnetosphere_spinning_tetrad.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
// 2D Wald magnetosphere problem for a non-static (Kerr) black hole, for the general relativistic Maxwell equations in the tetrad basis.
// Input parameters describe a uniform magnetic field surrounding rotating black hole.
// Based on the analytical solution for force-free electrodynamics presented in the article:
// R. M. Wald (1974), "Black hole in a uniform magnetic field",
// Physical Review D, Volume 10 (6): 1680.
// https://journals.aps.org/prd/abstract/10.1103/PhysRevD.10.1680

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
7 changes: 7 additions & 0 deletions regression/rt_gr_wald_magnetosphere_static.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
// 2D Wald magnetosphere problem for a static (Schwarzschild) black hole, for the general relativistic Maxwell equations.
// Input parameters describe a uniform magnetic field surrounding non-rotating black hole.
// Based on the analytical solution for force-free electrodynamics presented in the article:
// R. M. Wald (1974), "Black hole in a uniform magnetic field",
// Physical Review D, Volume 10 (6): 1680.
// https://journals.aps.org/prd/abstract/10.1103/PhysRevD.10.1680

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down
7 changes: 7 additions & 0 deletions regression/rt_gr_wald_magnetosphere_static_tetrad.c
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
// 2D Wald magnetosphere problem for a static (Schwarzschild) black hole, for the general relativistic Maxwell equations in the tetrad basis.
// Input parameters describe a uniform magnetic field surrounding non-rotating black hole.
// Based on the analytical solution for force-free electrodynamics presented in the article:
// R. M. Wald (1974), "Black hole in a uniform magnetic field",
// Physical Review D, Volume 10 (6): 1680.
// https://journals.aps.org/prd/abstract/10.1103/PhysRevD.10.1680

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
Expand Down

0 comments on commit bb312c6

Please sign in to comment.