Setting up MPC architecture #351
linting_auto.yml
on: pull_request
Run C++/Python linters
10s
Annotations
46 errors and 2 warnings
src/action/model_predictive_control/test/mpc_test.py#L1
-# create some trajectory and init mpc and carla nodes
\ No newline at end of file
+# create some trajectory and init mpc and carla nodes
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L7
from boxconstraint import BoxConstraint
TIME_STEP = 0.05
-PREDICTION_HORIZON = 2.0
+PREDICTION_HORIZON = 2.0
class MPCCore:
def __init__(self):
-
+
self.params = {
'L': 2.875 # Wheelbase of the vehicle. Source : https://www.tesla.com/ownersmanual/model3/en_us/GUID-56562137-FC31-4110-A13C-9A9FC6657BF0.html
}
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L21
self.dt = TIME_STEP # Time step for discretization
self.state_dim = 4 # Dimension of the state [x, y, theta, v]
self.control_dim = 2 # Dimension of the control input [steering angle, acceleration]
-
+
# Initialize Opti object
self.opti = ca.Opti()
# Declare variables
- self.X = self.opti.variable(self.state_dim, self.N + 1) # state trajectory variables over prediction horizon
- self.U = self.opti.variable(self.control_dim, self.N) # control trajectory variables over prediction horizon
+ # state trajectory variables over prediction horizon
+ self.X = self.opti.variable(self.state_dim, self.N + 1)
+ # control trajectory variables over prediction horizon
+ self.U = self.opti.variable(self.control_dim, self.N)
self.P = self.opti.parameter(self.state_dim) # initial state parameter
- self.Q_base = ca.MX.eye(self.state_dim) # Base state penalty matrix (emphasizes position states)
+ # Base state penalty matrix (emphasizes position states)
+ self.Q_base = ca.MX.eye(self.state_dim)
self.weight_increase_factor = 1.00 # Increase factor for each step in the prediction horizon
self.R = ca.MX.eye(self.control_dim) # control penalty matrix for objective function
self.W = self.opti.parameter(2, self.N) # Reference trajectory parameter
-
+
# Objective
self.obj = 0
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L64
# # Handle missing or invalid waypoint coordinates
# print(f"Invalid waypoint: {wp}")
-
- def generate_waypoint(x, y): # Convert to CasADi format and add to the waypoints list
+ def generate_waypoint(x, y): # Convert to CasADi format and add to the waypoints list
return ca.vertcat(x, y)
def setup_mpc(self):
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L74
"""
for k in range(self.N):
- Q = self.Q_base * (self.weight_increase_factor ** k) # Increase weight for each step in the prediction horizon
+ # Increase weight for each step in the prediction horizon
+ Q = self.Q_base * (self.weight_increase_factor ** k)
x_k = self.X[:, k] # Current state
u_k = self.U[:, k] # Current control input
x_next = self.X[:, k + 1] # Next state
x_ref = ca.vertcat(self.W[:, k],
- ca.MX.zeros(self.state_dim - 2, 1)) # Reference state with waypoint and zero for other states
+ ca.MX.zeros(self.state_dim - 2, 1)) # Reference state with waypoint and zero for other states
dx = x_k - x_ref # Deviation of state from reference state
du = u_k # Control input deviation (assuming a desired control input of zero)
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L94
# Maximum steerin angle for dynamics
self.max_steering_angle_deg = max(wheel.max_steer_angle for wheel in
- vehicle.get_physics_control().wheels) # Maximum steering angle in degrees (from vehicle physics control
- self.max_steering_angle_rad = max_steering_angle_deg * (ca.pi / 180) # Maximum steering angle in radians
+ vehicle.get_physics_control().wheels) # Maximum steering angle in degrees (from vehicle physics control
+ self.max_steering_angle_rad = max_steering_angle_deg * \
+ (ca.pi / 180) # Maximum steering angle in radians
# Dynamics (Euler discretization using bicycle model)
for k in range(self.N):
- steering_angle_rad = self.U[0, k] * self.max_steering_angle_rad # Convert normalized steering angle to radians
+ # Convert normalized steering angle to radians
+ steering_angle_rad = self.U[0, k] * self.max_steering_angle_rad
self.opti.subject_to(self.X[:, k + 1] == self.X[:, k] + self.dt * ca.vertcat(
self.X[3, k] * ca.cos(self.X[2, k]),
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L108
self.U[1, k]
))
-
def setup_constraints(self):
-
+
self.opti.subject_to(self.X[:, 0] == self.P) # Initial state constraint
# Input constraints
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L136
# State constraints
# opti.subject_to(state_space.H_np @ X[:, i] <= state_space.b_np)
-
+
def setup_solver(self):
acceptable_dual_inf_tol = 1e11
acceptable_compl_inf_tol = 1e-3
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L159
:param vehicle_state: VehicleState message with current position, velocity, and angle.
"""
# Update P (initial state) with the new vehicle state
- self.opti.set_value(self.P, ca.vertcat(vehicle_state.pos_x, vehicle_state.pos_y, vehicle_state.angle, vehicle_state.velocity))
-
+ self.opti.set_value(self.P, ca.vertcat(vehicle_state.pos_x,
+ vehicle_state.pos_y, vehicle_state.angle, vehicle_state.velocity))
+
x0 = vehicle_state.pos_x
y0 = vehicle_state.pos_y
theta0 = vehicle_state.angle
- v0 = vehicle_state.velocity # Assumes CARLA sends a velocity scalar not a velocity vector
+ v0 = vehicle_state.velocity # Assumes CARLA sends a velocity scalar not a velocity vector
i = vehicle_state.interation
print("Current x: ", x0)
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L173
print("Current velocity: ", v0)
if i > 0:
- self.closed_loop_data.append([x0, y0, theta0, v0]) # Original Code need i > 0
+ self.closed_loop_data.append([x0, y0, theta0, v0]) # Original Code need i > 0
initial_state = ca.vertcat(x0, y0, theta0, v0)
self.opti.set_value(self.P, initial_state)
# Set the reference trajectory for the current iteration
- self.opti.set_value(self.W, ca.horzcat(*self.waypoints[i:i + self.N])) # Concatenate waypoints
+ self.opti.set_value(self.W, ca.horzcat(
+ *self.waypoints[i:i + self.N])) # Concatenate waypoints
if self.prev_sol_x is not None and self.prev_sol_u is not None:
# Warm-starting the solver with the previous solution
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L192
"""
steering_angle = 0
throttle = 0
-
+
# Solve the optimization problem
sol = self.opti.solve()
-
+
if sol.stats()['success']:
# Extract control inputs (steering angle, throttle)
u = sol.value(self.U[:, 0])
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L212
self.open_loop_data.append(open_loop_trajectory)
if i > 0:
- predicted_state = self.prev_sol_x[:, 1] # Predicted next state from the previous solution
+ # Predicted next state from the previous solution
+ predicted_state = self.prev_sol_x[:, 1]
actual_state = np.array([x0, y0, theta0, v0]) # Current actual state from CARLA
residual = actual_state - predicted_state
self.residuals_data.append(residual)
-
+
# Update previous solution variables for warm-starting next iteration
self.prev_sol_x = sol.value(self.X)
self.prev_sol_u = sol.value(self.U)
|
src/action/model_predictive_control/model_predictive_control/mpc_core.py#L224
else:
print("Error in optimization problem.")
- return steering_angle, throttle
\ No newline at end of file
+ return steering_angle, throttle
|
src/action/model_predictive_control/model_predictive_control/carla_node.py#L1
import rclpy
from rclpy.node import Node
-from action_msgs import ControlCommands, VehicleState, WaypointArray
+from action_msgs import ControlCommands, VehicleState, WaypointArray
from carla_core import CarlaCore # Import the CARLA core logic
|
src/action/model_predictive_control/model_predictive_control/carla_node.py#L13
self.carla_core = CarlaCore(self.publish_state)
# Publishers
- self.vehicle_state_publisher = self.create_publisher(VehicleState, '/carla/vehicle_state', 10)
+ self.vehicle_state_publisher = self.create_publisher(
+ VehicleState, '/carla/vehicle_state', 10)
self.waypoints_publisher = self.create_publisher(WaypointArray, '/carla/waypoints', 10)
# Subscribers
self.control_subscription = self.create_subscription(
ControlCommands, '/mpc/control_commands', self.control_callback, 10)
-
self.carla_core.start_main_loop()
-
def publish_state(self):
# Get the current vehicle state from carla_core
|
src/action/model_predictive_control/model_predictive_control/carla_node.py#L77
if __name__ == '__main__':
- main()
\ No newline at end of file
+ main()
|
src/action/model_predictive_control/model_predictive_control/boxconstraint.py#L6
"""
Bounded constraints lb <= x <= ub as polytopic constraints -Ix <= -b and Ix <= b. np.vstack(-I, I) forms the H matrix from III-D-b of the paper
"""
+
def __init__(self, lb=None, ub=None, plot_idxs=None):
"""
:param lb: dimwise list of lower bounds.
|
src/action/model_predictive_control/model_predictive_control/boxconstraint.py#L17
self.ub = np.array(ub, ndmin=2).reshape(-1, 1)
self.plot_idxs = plot_idxs
self.dim = self.lb.shape[0]
- assert (self.lb < self.ub).all(), "Lower bounds must be greater than corresponding upper bound for any given dimension"
+ assert (self.lb < self.ub).all(
+ ), "Lower bounds must be greater than corresponding upper bound for any given dimension"
self.setup_constraint_matrix()
def __str__(self): return "Lower bound: %s, Upper bound: %s" % (self.lb, self.ub)
|
src/action/model_predictive_control/model_predictive_control/boxconstraint.py#L67
return samples
def clip_to_bounds(self, samples):
- return np.clip(samples, self.lb, self.ub)
\ No newline at end of file
+ return np.clip(samples, self.lb, self.ub)
|
src/action/model_predictive_control/model_predictive_control/mpc_node.py#L12
# See the License for the specific language governing permissions and
# limitations under the License.
-import rclpy
+import rclpy
from rclpy.node import Node
-from action_msgs import ControlCommands, VehicleState, WaypointArray
+from action_msgs import ControlCommands, VehicleState, WaypointArray
from model_predictive_control.mpc_core import MPCCore
|
src/action/model_predictive_control/model_predictive_control/mpc_node.py#L32
# Subscribe to waypoints from CARLA
self.waypoints_subscription = self.create_subscription(
WaypointArray, '/carla/waypoints', self.waypoints_callback, 10)
-
+
self.control_publisher = self.create_publisher(ControlCommands, '/mpc/control_commands', 10)
def vehicle_state_callback(self, msg):
|
src/action/model_predictive_control/model_predictive_control/mpc_node.py#L56
if __name__ == '__main__':
- main()
\ No newline at end of file
+ main()
|
src/action/model_predictive_control/model_predictive_control/carla_core.py#L6
SIM_DURATION = 500 # Simulation duration in time steps in Carla
TIME_STEP = 0.05
-PREDICTION_HORIZON = 2.0
+PREDICTION_HORIZON = 2.0
+
class CarlaCore:
def __init__(self, publish_state):
|
src/action/model_predictive_control/model_predictive_control/carla_core.py#L77
vehicle = world.spawn_actor(vehicle_bp, spawn_point)
print(vehicle)
-
def get_waypoints(self):
"""Generate and return the list of waypoints relative to the vehicle's spawn point."""
- for i in range(SIM_DURATION):
+ for i in range(SIM_DURATION):
self.waypoints.append(self.generate_waypoint_relative_to_spawn(-10, 0))
return self.waypoints
def generate_waypoint_relative_to_spawn(self, forward_offset=0, sideways_offset=0):
- waypoint_x = spawn_point.location.x + spawn_point.get_forward_vector().x * forward_offset + spawn_point.get_right_vector().x * sideways_offset
- waypoint_y = spawn_point.location.y + spawn_point.get_forward_vector().y * forward_offset + spawn_point.get_right_vector().y * sideways_offset
+ waypoint_x = spawn_point.location.x + spawn_point.get_forward_vector().x * forward_offset + \
+ spawn_point.get_right_vector().x * sideways_offset
+ waypoint_y = spawn_point.location.y + spawn_point.get_forward_vector().y * forward_offset + \
+ spawn_point.get_right_vector().y * sideways_offset
return [waypoint_x, waypoint_y]
def get_vehicle_state(self):
|
src/action/model_predictive_control/model_predictive_control/carla_core.py#L117
Applies the received control commands to the vehicle.
"""
if throttle < 0:
- self.vehicle.apply_control(carla.VehicleControl(throttle=-throttle, steer=steering_angle, reverse=True))
+ self.vehicle.apply_control(carla.VehicleControl(
+ throttle=-throttle, steer=steering_angle, reverse=True))
else:
- self.vehicle.apply_control(carla.VehicleControl(throttle=throttle, steer=steering_angle))
+ self.vehicle.apply_control(carla.VehicleControl(
+ throttle=throttle, steer=steering_angle))
def start_main_loop(self):
"""
|
src/action/model_predictive_control/model_predictive_control/carla_core.py#L143
extent = carla.Location(x=0.5, y=0.5, z=0.5)
world.debug.draw_box(box=carla.BoundingBox(carla_waypoint, extent * 1e-2),
- rotation=carla.Rotation(pitch=0, yaw=0, roll=0), life_time=TIME_STEP * 10, thickness=0.5,
- color=carla.Color(255, 0, 0))
-
- self.publish_state() # MPC Should Start after this !!!!
-
+ rotation=carla.Rotation(pitch=0, yaw=0, roll=0), life_time=TIME_STEP * 10, thickness=0.5,
+ color=carla.Color(255, 0, 0))
+
+ self.publish_state() # MPC Should Start after this !!!!
+
# Should automatically apply control after publishing state to mpc
print("")
world.tick() # Tick the CARLA world
-
-
+
def move_spectator_to_vehicle(distance=10):
vehicle_location = vehicle.get_location()
# Set viewing angle to slightly above the vehicle
- spectator_transform = carla.Transform(vehicle_location + carla.Location(z=distance), carla.Rotation(pitch=-90))
+ spectator_transform = carla.Transform(
+ vehicle_location + carla.Location(z=distance), carla.Rotation(pitch=-90))
spectator.set_transform(spectator_transform)
def publish_state(self):
"""To be overridden by CarlaNode for publishing the vehicle state."""
- pass
\ No newline at end of file
+ pass
|
src/action/model_predictive_control/model_predictive_control/mpc.py#L41
def move_spectator_to_vehicle(vehicle, spectator, distance=10):
vehicle_location = vehicle.get_location()
# Set viewing angle to slightly above the vehicle
- spectator_transform = carla.Transform(vehicle_location + carla.Location(z=distance), carla.Rotation(pitch=-90))
+ spectator_transform = carla.Transform(
+ vehicle_location + carla.Location(z=distance), carla.Rotation(pitch=-90))
spectator.set_transform(spectator_transform)
|
src/action/model_predictive_control/model_predictive_control/mpc.py#L68
def generate_waypoint_relative_to_spawn(forward_offset=0, sideways_offset=0):
- waypoint_x = spawn_point.location.x + spawn_point.get_forward_vector().x * forward_offset + spawn_point.get_right_vector().x * sideways_offset
- waypoint_y = spawn_point.location.y + spawn_point.get_forward_vector().y * forward_offset + spawn_point.get_right_vector().y * sideways_offset
+ waypoint_x = spawn_point.location.x + spawn_point.get_forward_vector().x * forward_offset + \
+ spawn_point.get_right_vector().x * sideways_offset
+ waypoint_y = spawn_point.location.y + spawn_point.get_forward_vector().y * forward_offset + \
+ spawn_point.get_right_vector().y * sideways_offset
return ca.vertcat(waypoint_x, waypoint_y)
|
src/action/model_predictive_control/model_predictive_control/mpc.py#L107
# Objective
obj = 0
for k in range(N):
- Q = Q_base * (weight_increase_factor ** k) # Increase weight for each step in the prediction horizon
+ # Increase weight for each step in the prediction horizon
+ Q = Q_base * (weight_increase_factor ** k)
x_k = X[:, k] # Current state
u_k = U[:, k] # Current control input
|
src/action/model_predictive_control/model_predictive_control/mpc.py#L132
# Dynamics (Euler discretization using bicycle model)
for k in range(N):
- steering_angle_rad = U[0, k] * max_steering_angle_rad # Convert normalized steering angle to radians
+ # Convert normalized steering angle to radians
+ steering_angle_rad = U[0, k] * max_steering_angle_rad
opti.subject_to(X[:, k + 1] == X[:, k] + dt * ca.vertcat(
X[3, k] * ca.cos(X[2, k]),
|
src/simulation/carla_sim/carla_sim/carla_node.py#L1
import rclpy
from rclpy.node import Node
-from action_msgs import ControlCommands, VehicleState, WaypointArray
+from action_msgs import ControlCommands, VehicleState, WaypointArray
from carla_core import CarlaCore # Import the CARLA core logic
|
src/simulation/carla_sim/carla_sim/carla_node.py#L13
self.carla_core = CarlaCore(self.publish_state)
# Publishers
- self.vehicle_state_publisher = self.create_publisher(VehicleState, '/carla/vehicle_state', 10)
+ self.vehicle_state_publisher = self.create_publisher(
+ VehicleState, '/carla/vehicle_state', 10)
self.waypoints_publisher = self.create_publisher(WaypointArray, '/carla/waypoints', 10)
# Subscribers
self.control_subscription = self.create_subscription(
ControlCommands, '/mpc/control_commands', self.control_callback, 10)
-
self.carla_core.start_main_loop()
-
def publish_state(self):
# Get the current vehicle state from carla_core
|
src/simulation/carla_sim/carla_sim/carla_node.py#L77
if __name__ == '__main__':
- main()
\ No newline at end of file
+ main()
|
src/simulation/carla_sim/carla_sim/carla_core.py#L6
SIM_DURATION = 500 # Simulation duration in time steps in Carla
TIME_STEP = 0.05
-PREDICTION_HORIZON = 2.0
+PREDICTION_HORIZON = 2.0
+
class CarlaCore:
def __init__(self, publish_state):
|
src/simulation/carla_sim/carla_sim/carla_core.py#L77
vehicle = world.spawn_actor(vehicle_bp, spawn_point)
print(vehicle)
-
def get_waypoints(self):
"""Generate and return the list of waypoints relative to the vehicle's spawn point."""
- for i in range(SIM_DURATION):
+ for i in range(SIM_DURATION):
self.waypoints.append(self.generate_waypoint_relative_to_spawn(-10, 0))
return self.waypoints
def generate_waypoint_relative_to_spawn(self, forward_offset=0, sideways_offset=0):
- waypoint_x = spawn_point.location.x + spawn_point.get_forward_vector().x * forward_offset + spawn_point.get_right_vector().x * sideways_offset
- waypoint_y = spawn_point.location.y + spawn_point.get_forward_vector().y * forward_offset + spawn_point.get_right_vector().y * sideways_offset
+ waypoint_x = spawn_point.location.x + spawn_point.get_forward_vector().x * forward_offset + \
+ spawn_point.get_right_vector().x * sideways_offset
+ waypoint_y = spawn_point.location.y + spawn_point.get_forward_vector().y * forward_offset + \
+ spawn_point.get_right_vector().y * sideways_offset
return [waypoint_x, waypoint_y]
def get_vehicle_state(self):
|
src/simulation/carla_sim/carla_sim/carla_core.py#L117
Applies the received control commands to the vehicle.
"""
if throttle < 0:
- self.vehicle.apply_control(carla.VehicleControl(throttle=-throttle, steer=steering_angle, reverse=True))
+ self.vehicle.apply_control(carla.VehicleControl(
+ throttle=-throttle, steer=steering_angle, reverse=True))
else:
- self.vehicle.apply_control(carla.VehicleControl(throttle=throttle, steer=steering_angle))
+ self.vehicle.apply_control(carla.VehicleControl(
+ throttle=throttle, steer=steering_angle))
def start_main_loop(self):
"""
|
src/simulation/carla_sim/carla_sim/carla_core.py#L143
extent = carla.Location(x=0.5, y=0.5, z=0.5)
world.debug.draw_box(box=carla.BoundingBox(carla_waypoint, extent * 1e-2),
- rotation=carla.Rotation(pitch=0, yaw=0, roll=0), life_time=TIME_STEP * 10, thickness=0.5,
- color=carla.Color(255, 0, 0))
-
- self.publish_state() # MPC Should Start after this !!!!
-
+ rotation=carla.Rotation(pitch=0, yaw=0, roll=0), life_time=TIME_STEP * 10, thickness=0.5,
+ color=carla.Color(255, 0, 0))
+
+ self.publish_state() # MPC Should Start after this !!!!
+
# Should automatically apply control after publishing state to mpc
print("")
world.tick() # Tick the CARLA world
-
-
+
def move_spectator_to_vehicle(distance=10):
vehicle_location = vehicle.get_location()
# Set viewing angle to slightly above the vehicle
- spectator_transform = carla.Transform(vehicle_location + carla.Location(z=distance), carla.Rotation(pitch=-90))
+ spectator_transform = carla.Transform(
+ vehicle_location + carla.Location(z=distance), carla.Rotation(pitch=-90))
spectator.set_transform(spectator_transform)
def publish_state(self):
"""To be overridden by CarlaNode for publishing the vehicle state."""
- pass
\ No newline at end of file
+ pass
|
src/simulation/carla_notebooks/mpc_script.py#L41
def move_spectator_to_vehicle(vehicle, spectator, distance=10):
vehicle_location = vehicle.get_location()
# Set viewing angle to slightly above the vehicle
- spectator_transform = carla.Transform(vehicle_location + carla.Location(z=distance), carla.Rotation(pitch=-90))
+ spectator_transform = carla.Transform(
+ vehicle_location + carla.Location(z=distance), carla.Rotation(pitch=-90))
spectator.set_transform(spectator_transform)
|
src/simulation/carla_notebooks/mpc_script.py#L68
def generate_waypoint_relative_to_spawn(forward_offset=0, sideways_offset=0):
- waypoint_x = spawn_point.location.x + spawn_point.get_forward_vector().x * forward_offset + spawn_point.get_right_vector().x * sideways_offset
- waypoint_y = spawn_point.location.y + spawn_point.get_forward_vector().y * forward_offset + spawn_point.get_right_vector().y * sideways_offset
+ waypoint_x = spawn_point.location.x + spawn_point.get_forward_vector().x * forward_offset + \
+ spawn_point.get_right_vector().x * sideways_offset
+ waypoint_y = spawn_point.location.y + spawn_point.get_forward_vector().y * forward_offset + \
+ spawn_point.get_right_vector().y * sideways_offset
return ca.vertcat(waypoint_x, waypoint_y)
|
src/simulation/carla_notebooks/mpc_script.py#L107
# Objective
obj = 0
for k in range(N):
- Q = Q_base * (weight_increase_factor ** k) # Increase weight for each step in the prediction horizon
+ # Increase weight for each step in the prediction horizon
+ Q = Q_base * (weight_increase_factor ** k)
x_k = X[:, k] # Current state
u_k = U[:, k] # Current control input
|
src/simulation/carla_notebooks/mpc_script.py#L132
# Dynamics (Euler discretization using bicycle model)
for k in range(N):
- steering_angle_rad = U[0, k] * max_steering_angle_rad # Convert normalized steering angle to radians
+ # Convert normalized steering angle to radians
+ steering_angle_rad = U[0, k] * max_steering_angle_rad
opti.subject_to(X[:, k + 1] == X[:, k] + dt * ca.vertcat(
X[3, k] * ca.cos(X[2, k]),
|
src/simulation/carla_notebooks/boxconstraint.py#L6
"""
Bounded constraints lb <= x <= ub as polytopic constraints -Ix <= -b and Ix <= b. np.vstack(-I, I) forms the H matrix from III-D-b of the paper
"""
+
def __init__(self, lb=None, ub=None, plot_idxs=None):
"""
:param lb: dimwise list of lower bounds.
|
src/simulation/carla_notebooks/boxconstraint.py#L17
self.ub = np.array(ub, ndmin=2).reshape(-1, 1)
self.plot_idxs = plot_idxs
self.dim = self.lb.shape[0]
- assert (self.lb < self.ub).all(), "Lower bounds must be greater than corresponding upper bound for any given dimension"
+ assert (self.lb < self.ub).all(
+ ), "Lower bounds must be greater than corresponding upper bound for any given dimension"
self.setup_constraint_matrix()
def __str__(self): return "Lower bound: %s, Upper bound: %s" % (self.lb, self.ub)
|
src/simulation/carla_notebooks/boxconstraint.py#L67
return samples
def clip_to_bounds(self, samples):
- return np.clip(samples, self.lb, self.ub)
\ No newline at end of file
+ return np.clip(samples, self.lb, self.ub)
|
src/simulation/carla_notebooks/mpc_test.py#L5
## SETUP ##
client_name = os.environ.get("CLIENT_NAME", "DOES NOT EXIST")
if client_name == "DOES NOT EXIST":
- raise Exception("The environment variable for the container name of the carla server has not been set")
+ raise Exception(
+ "The environment variable for the container name of the carla server has not been set")
# Connect to the client and retrieve the world object
client = carla.Client(client_name, 2000)
world = client.get_world()
spectator = world.get_spectator()
-
|
src/samples/python/aggregator/setup.py#L14
# Include our package.xml file
(os.path.join('share', package_name), ['package.xml']),
# Include all launch files.
- (os.path.join('share', package_name, 'launch'), \
+ (os.path.join('share', package_name, 'launch'),
glob(os.path.join('launch', '*.launch.py'))),
],
install_requires=['setuptools'],
|
Run C++/Python linters
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/setup-python@v1. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
|
Run C++/Python linters
The following actions use a deprecated Node.js version and will be forced to run on node20: actions/setup-python@v1, WATonomous/wato-lint-action@v1. For more info: https://github.blog/changelog/2024-03-07-github-actions-all-actions-will-run-on-node20-instead-of-node16-by-default/
|