-
Notifications
You must be signed in to change notification settings - Fork 248
Profiling Kratos with LineProfile
This page details the steps to follow in order to profile Kratos with a python line profiler. Please be aware that this is an intrusive process, and you will have to modify some of your code.
Obtaining the profiler: You can find the python line profiler an all the relevant information here: https://github.com/pyutils/line_profiler.
If you prefer only to install it just:
python -m pip install line_profiler
The python line profiler needs to know beforehand which functions are you interested in debugger. In that sense, it is helpful that you already have a slight idea on what sections of your code are interested on.
In order to mark such parts, you will have to use the @profile
decorator. A example is presented below:
@profile
def my_function():
var = calculate()
... etc ...
Unfortunately, this process will make your code break if you try to run it without the profiler. We are working on integrating a mechanism that solved this inside Kratos, but in the meantime we recommend you to use a launcher script to run your code. This will allow to ignore the decorators without removing them from the code if you intend to run the code normally.
Such launcher script have to look like this:
import os
import sys
import builtins
import line_profiler
prof = line_profiler.LineProfiler()
builtins.__dict__['profile'] = prof
exec(open(sys.argv[1]).read())
with open("profile_"+str(os.getpid())+".prof", "w+") as prof_file:
prof.print_stats(prof_file)
print("Profile output written in:", "profile_"+str(os.getpid())+".prof")
We do recommend to launch your case with this launcher as well if you intend to run with MPI, as it will automatically generate a different report for every process. An example of an invocation call will look like this:
Serial
python profiler.py MainKratos.py
Distributed
mpirun -np [N] --output-filename profile python profiler.py MainKratos.py
Parser.py
import os
import re
import sys
def ReadValueAs(type, item):
return type(item) if item.strip() != "" else ""
def ReadBlock(my_file, json_object):
total_time = my_file.readline() # Total time or end of file
if total_time == "" or total_time == "\n":
return True
else:
profiled_file = my_file.readline().rstrip().split(" ")[1]
profiled_function = my_file.readline().split(" ")[1]
my_file.readline() # Space
my_file.readline() # Headings
my_file.readline() # ========
stop = False
function_lines = {}
if profiled_file not in json_object:
json_object[profiled_file] = {}
while not stop:
profile_line = my_file.readline()
if profile_line == "" or profile_line == "\n":
stop = True
else:
json_line = {"Line":None, "Hits":None, "Time":None, "Per Hit":None, "% Time":None, "Line Content":None}
# This may need some tunning. I am not sure how to correctly detect the separators here.
column_size = 48
line_items = re.split(r'\s+', profile_line[0:column_size].strip())
# Has info
if len(line_items) == 5:
json_line["Line"] = ReadValueAs(int, line_items[0])
json_line["Hits"] = ReadValueAs(int, line_items[1])
json_line["Time"] = ReadValueAs(float, line_items[2])
json_line["Per Hit"] = ReadValueAs(float, line_items[3])
json_line["% Time"] = ReadValueAs(float, line_items[4])
json_line["Line Content"] = profile_line[column_size:-1].rstrip()
function_lines[json_line["Line"]] = json_line
json_object[profiled_file][profiled_function] = function_lines
return False
def ParseFile(filename):
json_object = {}
with open(filename, "r") as parse_file:
timer_unit = parse_file.readline() # Timer
parse_file.readline() # Space
is_end_block = False
while not is_end_block:
is_end_block = ReadBlock(parse_file, json_object) # Block Content
return json_object
def ComputeTotalTime(trace):
total_time = 0.0
for filename in trace:
for function in trace[filename]:
for line in trace[filename][function]:
if trace[filename][function][line]["Time"] != '':
total_time += trace[filename][function][line]["Time"]
return total_time
Analyzer.py
import parser
profile_outputs = {
2: parser.ParseFile("profile-2"),
4: parser.ParseFile("profile-4"),
8: parser.ParseFile("profile-8"),
16: parser.ParseFile("profile-16"),
32: parser.ParseFile("profile-32"),
64: parser.ParseFile("profile-64"),
128: parser.ParseFile("profile-128")
}
def CalculateTotalSpeedUp(input_files, ref):
speedups = {}
for proc in input_files:
speedups[proc] = parser.ComputeTotalTime(input_files[proc])
for proc in input_files:
if(proc != ref):
speedups[proc] = speedups[ref]/speedups[proc]
speedups[ref] = 1
print(speedups)
def CalculateSpeedUpByLine(input_files, ref):
speedups = {}
for proc in input_files:
trace = input_files[proc]
for filename in trace:
for function in trace[filename]:
for line in trace[filename][function]:
if trace[filename][function][line]["Time"] != '' and trace[filename][function][line]["Time"] != 0.0:
trace[filename][function][line]["SpeedUp"] = input_files[ref][filename][function][line]["Time"] / input_files[proc][filename][function][line]["Time"]
def ExtractExpensiveLines(input_files, max_core_num, max_line_count, check_criteria):
most_relevant_entry_lines = []
trace = input_files[max_core_num]
for filename in trace:
for function in trace[filename]:
for line in trace[filename][function]:
if trace[filename][function][line][check_criteria] != '':
most_relevant_entry_lines.append({"Line": trace[filename][function][line], "Function":function, "File":filename})
most_relevant_entry_lines.sort(key=lambda x: x["Line"][check_criteria], reverse=True)
return most_relevant_entry_lines[0:max_line_count]
def GenerateFieldTable(input_files, function_lines, field, min_procs, max_procs, scale_to_min_procs):
for e_line in function_lines:
file_name = e_line["File"]
function_name = e_line["Function"]
function_line = e_line["Line"]
buffer = str(file_name.split("/")[-1])+":"+str(function_name)+":"+str(function_line["Line"])+":"+str(function_line["Line Content"])
for proc in input_files:
trace = input_files[proc]
value = trace[file_name][function_name][function_line["Line"]][field]
if field == "SpeedUp" and scale_to_min_procs:
value = value * min_procs
buffer += "|" + str(value)
buffer += "|" + str(input_files[max_procs][file_name][function_name][function_line["Line"]]["Time"]/1e6)
buffer += "|" + str(input_files[max_procs][file_name][function_name][function_line["Line"]]["Hits"])
print(buffer)
min_procs = 1
max_procs = 4
CalculateSpeedUpByLine(profile_outputs, min_procs)
most_relevant_entry_lines = ExtractExpensiveLines(profile_outputs, max_procs, 20, "Time")
GenerateFieldTable(profile_outputs, most_relevant_entry_lines, "SpeedUp", min_procs, max_procs, True)
CalculateTotalSpeedUp(profile_outputs, min_procs)
- Getting Kratos (Last compiled Release)
- Compiling Kratos
- Running an example from GiD
- Kratos input files and I/O
- Data management
- Solving strategies
- Manipulating solution values
- Multiphysics
- Video tutorials
- Style Guide
- Authorship of Kratos files
- Configure .gitignore
- How to configure clang-format
- How to use smart pointer in Kratos
- How to define adjoint elements and response functions
- Visibility and Exposure
- Namespaces and Static Classes
Kratos structure
Conventions
Solvers
Debugging, profiling and testing
- Compiling Kratos in debug mode
- Debugging Kratos using GDB
- Cross-debugging Kratos under Windows
- Debugging Kratos C++ under Windows
- Checking memory usage with Valgind
- Profiling Kratos with MAQAO
- Creating unitary tests
- Using ThreadSanitizer to detect OMP data race bugs
- Debugging Memory with ASAN
HOW TOs
- How to create applications
- Python Tutorials
- Kratos For Dummies (I)
- List of classes and variables accessible via python
- How to use Logger
- How to Create a New Application using cmake
- How to write a JSON configuration file
- How to Access DataBase
- How to use quaternions in Kratos
- How to do Mapping between nonmatching meshes
- How to use Clang-Tidy to automatically correct code
- How to use the Constitutive Law class
- How to use Serialization
- How to use GlobalPointerCommunicator
- How to use PointerMapCommunicator
- How to use the Geometry
- How to use processes for BCs
- How to use Parallel Utilities in futureproofing the code
- Porting to Pybind11 (LEGACY CODE)
- Porting to AMatrix
- How to use Cotire
- Applications: Python-modules
- How to run multiple cases using PyCOMPSs
- How to apply a function to a list of variables
- How to use Kratos Native sparse linear algebra
Utilities
Kratos API
Kratos Structural Mechanics API