Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Full support of sparse AD for NLS models #239

Merged
merged 9 commits into from
Jun 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 64 additions & 1 deletion src/ad_api.jl
Original file line number Diff line number Diff line change
Expand Up @@ -82,13 +82,18 @@ end

"""
get_residual_nnzj(b::ADModelBackend, nvar, nequ)
get_residual_nnzj(nls::AbstractNLSModel, nvar, nequ)

Return `get_nln_nnzj(b.jacobian_residual_backend, nvar, nequ)`.
Return the number of nonzeros elements in the residual Jacobians.
"""
function get_residual_nnzj(b::ADModelBackend, nvar, nequ)
get_nln_nnzj(b.jacobian_residual_backend, nvar, nequ)
end

function get_residual_nnzj(nls::AbstractNLSModel, nvar, nequ)
nls.nls_meta.nnzj
end

function get_residual_nnzj(
b::ADModelBackend{GB, HvB, JvB, JtvB, JB, HB, GHJ, HvBLS, JvBLS, JtvBLS, JBLS, HBLS},
nvar,
Expand Down Expand Up @@ -118,6 +123,27 @@ function get_nln_nnzh(nlp::AbstractNLPModel, nvar)
nlp.meta.nnzh
end

"""
get_residual_nnzh(b::ADModelBackend, nvar)
get_residual_nnzh(nls::AbstractNLSModel, nvar)

Return the number of nonzeros elements in the residual Hessians.
"""
function get_residual_nnzh(b::ADModelBackend, nvar)
get_nln_nnzh(b.hessian_residual_backend, nvar)
end

function get_residual_nnzh(nls::AbstractNLSModel, nvar)
nls.nls_meta.nnzh
end

function get_residual_nnzh(
b::ADModelBackend{GB, HvB, JvB, JtvB, JB, HB, GHJ, HvBLS, JvBLS, JtvBLS, JBLS, HBLS},
nvar) where {GB, HvB, JvB, JtvB, JB, HB, GHJ, HvBLS, JvBLS, JtvBLS, JBLS, HBLS <: AbstractNLPModel}
nls = b.hessian_residual_backend
nls.nls_meta.nnzh
end

throw_error(b) =
throw(ArgumentError("The AD backend $b is not loaded. Please load the corresponding AD package."))
gradient(b::ADBackend, ::Any, ::Any) = throw_error(b)
Expand Down Expand Up @@ -289,6 +315,43 @@ function NLPModels.hess_coord!(
return vals
end

function NLPModels.hess_structure_residual!(
b::ADBackend,
nls::AbstractADNLSModel,
rows::AbstractVector{<:Integer},
cols::AbstractVector{<:Integer},
)
n = nls.meta.nvar
pos = 0
for j = 1:n
for i = j:n
pos += 1
rows[pos] = i
cols[pos] = j
end
end
return rows, cols
end

function NLPModels.hess_coord_residual!(
b::ADBackend,
nls::AbstractADNLSModel,
x::AbstractVector,
v::AbstractVector,
vals::AbstractVector,
)
F = get_F(nls, b)
Hx = hessian(b, x -> dot(F(x), v), x)
k = 1
for j = 1:(nls.meta.nvar)
for i = j:(nls.meta.nvar)
vals[k] = Hx[i, j]
k += 1
end
end
return vals
end

function NLPModels.hprod!(
b::ADBackend,
nlp::ADModel,
Expand Down
42 changes: 14 additions & 28 deletions src/nls.jl
Original file line number Diff line number Diff line change
Expand Up @@ -165,8 +165,9 @@ function ADNLSModel!(

meta = NLPModelMeta{T, S}(nvar, x0 = x0, nnzh = nnzh, name = name, minimize = minimize)
nls_nnzj = get_residual_nnzj(adbackend, nvar, nequ)
nls_nnzh = get_residual_nnzh(adbackend, nvar)
nls_meta =
NLSMeta{T, S}(nequ, nvar, nnzj = nls_nnzj, nnzh = div(nvar * (nvar + 1), 2), lin = linequ)
NLSMeta{T, S}(nequ, nvar, nnzj = nls_nnzj, nnzh = nls_nnzh, lin = linequ)
return ADNLSModel(meta, nls_meta, NLSCounters(), adbackend, F!, (cx, x) -> cx)
end

Expand Down Expand Up @@ -210,8 +211,9 @@ function ADNLSModel!(
minimize = minimize,
)
nls_nnzj = get_residual_nnzj(adbackend, nvar, nequ)
nls_nnzh = get_residual_nnzh(adbackend, nvar)
nls_meta =
NLSMeta{T, S}(nequ, nvar, nnzj = nls_nnzj, nnzh = div(nvar * (nvar + 1), 2), lin = linequ)
NLSMeta{T, S}(nequ, nvar, nnzj = nls_nnzj, nnzh = nls_nnzh, lin = linequ)
return ADNLSModel(meta, nls_meta, NLSCounters(), adbackend, F!, (cx, x) -> cx)
end

Expand Down Expand Up @@ -272,8 +274,9 @@ function ADNLSModel!(
minimize = minimize,
)
nls_nnzj = get_residual_nnzj(adbackend, nvar, nequ)
nls_nnzh = get_residual_nnzh(adbackend, nvar)
nls_meta =
NLSMeta{T, S}(nequ, nvar, nnzj = nls_nnzj, nnzh = div(nvar * (nvar + 1), 2), lin = linequ)
NLSMeta{T, S}(nequ, nvar, nnzj = nls_nnzj, nnzh = nls_nnzh, lin = linequ)
return ADNLSModel(meta, nls_meta, NLSCounters(), adbackend, F!, c!)
end

Expand Down Expand Up @@ -422,8 +425,9 @@ function ADNLSModel!(
minimize = minimize,
)
nls_nnzj = get_residual_nnzj(adbackend, nvar, nequ)
nls_nnzh = get_residual_nnzh(adbackend, nvar)
nls_meta =
NLSMeta{T, S}(nequ, nvar, nnzj = nls_nnzj, nnzh = div(nvar * (nvar + 1), 2), lin = linequ)
NLSMeta{T, S}(nequ, nvar, nnzj = nls_nnzj, nnzh = nls_nnzh, lin = linequ)
return ADNLSModel(meta, nls_meta, NLSCounters(), adbackend, F!, clinrows, clincols, clinvals, c!)
end

Expand Down Expand Up @@ -639,8 +643,9 @@ function ADNLSModel!(
minimize = minimize,
)
nls_nnzj = get_residual_nnzj(adbackend, nvar, nequ)
nls_nnzh = get_residual_nnzh(adbackend, nvar)
nls_meta =
NLSMeta{T, S}(nequ, nvar, nnzj = nls_nnzj, nnzh = div(nvar * (nvar + 1), 2), lin = linequ)
NLSMeta{T, S}(nequ, nvar, nnzj = nls_nnzj, nnzh = nls_nnzh, lin = linequ)
return ADNLSModel(meta, nls_meta, NLSCounters(), adbackend, F!, c!)
end

Expand Down Expand Up @@ -744,8 +749,9 @@ function ADNLSModel!(
minimize = minimize,
)
nls_nnzj = get_residual_nnzj(adbackend, nvar, nequ)
nls_nnzh = get_residual_nnzh(adbackend, nvar)
nls_meta =
NLSMeta{T, S}(nequ, nvar, nnzj = nls_nnzj, nnzh = div(nvar * (nvar + 1), 2), lin = linequ)
NLSMeta{T, S}(nequ, nvar, nnzj = nls_nnzj, nnzh = nls_nnzh, lin = linequ)
return ADNLSModel(meta, nls_meta, NLSCounters(), adbackend, F!, clinrows, clincols, clinvals, c!)
end

Expand Down Expand Up @@ -864,11 +870,7 @@ function NLPModels.hess_structure_residual!(
cols::AbstractVector{<:Integer},
)
@lencheck nls.nls_meta.nnzh rows cols
n = nls.meta.nvar
I = ((i, j) for i = 1:n, j = 1:n if i ≥ j)
rows .= getindex.(I, 1)
cols .= getindex.(I, 2)
return rows, cols
return hess_structure_residual!(nls.adbackend.hessian_residual_backend, nls, rows, cols)
end

function NLPModels.hess_coord_residual!(
Expand All @@ -881,23 +883,7 @@ function NLPModels.hess_coord_residual!(
@lencheck nls.nls_meta.nequ v
@lencheck nls.nls_meta.nnzh vals
increment!(nls, :neval_hess_residual)
F = get_F(nls, nls.adbackend.hessian_residual_backend)
Hx = hessian(nls.adbackend.hessian_residual_backend, x -> dot(F(x), v), x)
k = 1
for j = 1:(nls.meta.nvar)
for i = j:(nls.meta.nvar)
vals[k] = Hx[i, j]
k += 1
end
end
return vals
end

function NLPModels.jth_hess_residual(nls::ADNLSModel, x::AbstractVector, i::Int)
@lencheck nls.meta.nvar x
increment!(nls, :neval_jhess_residual)
F = get_F(nls, nls.adbackend.hessian_residual_backend)
return Symmetric(hessian(nls.adbackend.hessian_residual_backend, x -> F(x)[i], x), :L)
return hess_coord_residual!(nls.adbackend.hessian_residual_backend, nls, x, v, vals)
end

function NLPModels.hprod_residual!(
Expand Down
16 changes: 8 additions & 8 deletions src/predefined_backend.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,29 +3,29 @@ default_backend = Dict(
:hprod_backend => ForwardDiffADHvprod,
:jprod_backend => ForwardDiffADJprod,
:jtprod_backend => ForwardDiffADJtprod,
:jacobian_backend => SparseADJacobian, # ForwardDiffADJacobian
:hessian_backend => SparseADHessian, # ForwardDiffADHessian
:jacobian_backend => SparseADJacobian,
:hessian_backend => SparseADHessian,
:ghjvprod_backend => ForwardDiffADGHjvprod,
:hprod_residual_backend => ForwardDiffADHvprod,
:jprod_residual_backend => ForwardDiffADJprod,
:jtprod_residual_backend => ForwardDiffADJtprod,
:jacobian_residual_backend => SparseADJacobian, # ForwardDiffADJacobian,
:hessian_residual_backend => ForwardDiffADHessian,
:jacobian_residual_backend => SparseADJacobian,
:hessian_residual_backend => SparseADHessian,
)

optimized = Dict(
:gradient_backend => ReverseDiffADGradient, # EnzymeADGradient
:hprod_backend => ReverseDiffADHvprod,
:jprod_backend => ForwardDiffADJprod,
:jtprod_backend => ReverseDiffADJtprod,
:jacobian_backend => SparseADJacobian, # ForwardDiffADJacobian
:hessian_backend => SparseReverseADHessian, # ForwardDiffADHessian,
:jacobian_backend => SparseADJacobian,
:hessian_backend => SparseReverseADHessian,
:ghjvprod_backend => ForwardDiffADGHjvprod,
:hprod_residual_backend => ReverseDiffADHvprod,
:jprod_residual_backend => ForwardDiffADJprod,
:jtprod_residual_backend => ReverseDiffADJtprod,
:jacobian_residual_backend => SparseADJacobian, # ForwardDiffADJacobian
:hessian_residual_backend => ForwardDiffADHessian,
:jacobian_residual_backend => SparseADJacobian,
:hessian_residual_backend => SparseReverseADHessian,
)

generic = Dict(
Expand Down
37 changes: 26 additions & 11 deletions src/sparse_hessian.jl
Original file line number Diff line number Diff line change
Expand Up @@ -180,8 +180,16 @@ function NLPModels.hess_structure!(
return rows, cols
end

function NLPModels.hess_structure_residual!(
b::Union{SparseADHessian, SparseReverseADHessian},
nls::AbstractADNLSModel,
rows::AbstractVector{<:Integer},
cols::AbstractVector{<:Integer},
)
return hess_structure!(b, nls, rows, cols)
end

function sparse_hess_coord!(
ℓ::Function,
b::SparseADHessian{Tag, GT, S, T},
x::AbstractVector,
obj_weight,
Expand Down Expand Up @@ -219,7 +227,6 @@ function sparse_hess_coord!(
end

function sparse_hess_coord!(
ℓ::Function,
b::SparseReverseADHessian{T, S, Tagf, F, Tagψ, P},
x::AbstractVector,
obj_weight,
Expand Down Expand Up @@ -265,8 +272,7 @@ function NLPModels.hess_coord!(
obj_weight::Real,
vals::AbstractVector,
)
ℓ = get_lag(nlp, b, obj_weight, y)
sparse_hess_coord!(ℓ, b, x, obj_weight, y, vals)
sparse_hess_coord!(b, x, obj_weight, y, vals)
end

function NLPModels.hess_coord!(
Expand All @@ -277,22 +283,31 @@ function NLPModels.hess_coord!(
vals::AbstractVector,
)
b.y .= 0
ℓ = get_lag(nlp, b, obj_weight, b.y)
sparse_hess_coord!(ℓ, b, x, obj_weight, b.y, vals)
sparse_hess_coord!(b, x, obj_weight, b.y, vals)
end

function NLPModels.hess_coord!(
b::Union{SparseADHessian, SparseReverseADHessian},
nlp::ADModel,
x::AbstractVector,
j::Integer,
vals::AbstractVector{T},
) where {T}
vals::AbstractVector,
)
for (w, k) in enumerate(nlp.meta.nln)
b.y[w] = k == j ? 1 : 0
end
obj_weight = zero(T)
ℓ = get_lag(nlp, b, obj_weight, b.y)
sparse_hess_coord!(ℓ, b, x, obj_weight, b.y, vals)
obj_weight = zero(eltype(x))
sparse_hess_coord!(b, x, obj_weight, b.y, vals)
return vals
end

function NLPModels.hess_coord_residual!(
b::Union{SparseADHessian, SparseReverseADHessian},
nls::AbstractADNLSModel,
x::AbstractVector,
v::AbstractVector,
vals::AbstractVector,
)
obj_weight = zero(eltype(x))
sparse_hess_coord!(b, x, obj_weight, v, vals)
end
1 change: 1 addition & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@ end

@testset "Basic Hessian derivative test" begin
include("sparse_hessian.jl")
include("sparse_hessian_nls.jl")
end

for problem in NLPModelsTest.nlp_problems ∪ ["GENROSE"]
Expand Down
4 changes: 3 additions & 1 deletion test/sparse_hessian.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
list_sparse_hess_backend =
((ADNLPModels.SparseADHessian, Dict()), (ADNLPModels.ForwardDiffADHessian, Dict()))
((ADNLPModels.SparseADHessian, Dict()),
(ADNLPModels.SparseReverseADHessian, Dict()),
(ADNLPModels.ForwardDiffADHessian, Dict()))

dt = (Float32, Float64)

Expand Down
45 changes: 45 additions & 0 deletions test/sparse_hessian_nls.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
list_sparse_hess_backend = (
(ADNLPModels.SparseADHessian, Dict()),
amontoison marked this conversation as resolved.
Show resolved Hide resolved
(ADNLPModels.SparseReverseADHessian, Dict()),
(ADNLPModels.ForwardDiffADHessian, Dict()),
)

dt = (Float32, Float64)

@testset "Basic Hessian of residual derivative with backend=$(backend) and T=$(T)" for T in dt,
(backend, kw) in list_sparse_hess_backend

F!(Fx, x) = begin
Fx[1] = x[1] - 1
Fx[2] = 10 * (x[2] - x[1]^2)
Fx[3] = x[2] + 1
Fx
end
x0 = T[-1.2; 1.0]
nvar = 2
nequ = 3
nls = ADNLPModels.ADNLSModel!(F!, x0, 3, hessian_residual_backend = backend; kw...)

x = rand(T, nvar)
v = rand(T, nequ)
rows, cols = zeros(Int, nls.nls_meta.nnzh), zeros(Int, nls.nls_meta.nnzh)
vals = zeros(T, nls.nls_meta.nnzh)
hess_structure_residual!(nls, rows, cols)
hess_coord_residual!(nls, x, v, vals)
@test eltype(vals) == T
H = Symmetric(sparse(rows, cols, vals, nvar, nvar), :L)
@test H == [-20 * v[2] 0; 0 0]

# Test also the implementation of the backends
b = nls.adbackend.hessian_residual_backend
@test nls.nls_meta.nnzh == ADNLPModels.get_nln_nnzh(b, nvar)
ADNLPModels.hess_structure_residual!(b, nls, rows, cols)
ADNLPModels.hess_coord_residual!(b, nls, x, v, vals)
@test eltype(vals) == T
H = Symmetric(sparse(rows, cols, vals, nvar, nvar), :L)
@test H == [-20 * v[2] 0; 0 0]

nls = ADNLPModels.ADNLSModel!(F!, x0, 3, matrix_free = true; kw...)
@test nls.adbackend.hessian_backend isa ADNLPModels.EmptyADbackend
@test nls.adbackend.hessian_residual_backend isa ADNLPModels.EmptyADbackend
end
4 changes: 3 additions & 1 deletion test/sparse_jacobian.jl
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
list_sparse_jac_backend = (
(ADNLPModels.SparseADJacobian, Dict()), # default
(ADNLPModels.SparseADJacobian, Dict()),
(ADNLPModels.ForwardDiffADJacobian, Dict()),
)

dt = (Float32, Float64)

@testset "Basic Jacobian derivative with backend=$(backend) and T=$(T)" for T in dt,
(backend, kw) in list_sparse_jac_backend

Expand Down
4 changes: 3 additions & 1 deletion test/sparse_jacobian_nls.jl
Original file line number Diff line number Diff line change
@@ -1,8 +1,10 @@
list_sparse_jac_backend = (
(ADNLPModels.SparseADJacobian, Dict()), # default
(ADNLPModels.SparseADJacobian, Dict()),
(ADNLPModels.ForwardDiffADJacobian, Dict()),
)

dt = (Float32, Float64)

@testset "Basic Jacobian of residual derivative with backend=$(backend) and T=$(T)" for T in dt,
(backend, kw) in list_sparse_jac_backend

Expand Down
Loading