Skip to content

scGNN (single cell graph neural networks) for single cell clustering and imputation using graph neural networks

License

Notifications You must be signed in to change notification settings

JlaXing/scGNN_resolution

 
 

Repository files navigation

scGNN

About:

scGNN (single cell graph neural networks) provides a hypothesis-free deep learning framework for scRNA-Seq analyses. This framework formulates and aggregates cell-cell relationships with graph neural networks and models heterogeneous gene expression patterns using a left-truncated mixture Gaussian model. scGNN integrates three iterative multi-modal autoencoders and outperforms existing tools for gene imputation and cell clustering on four benchmark scRNA-Seq datasets.

This repository contains the source code for the paper scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses. Juexin Wang*, Anjun Ma*, Yuzhou Chang, Jianting Gong, Yuexu Jiang, Hongjun Fu, Cankun Wang, Ren Qi, Qin Ma*, Dong Xu*. Nat Commun 12, 1882 (2021). https://www.nature.com/articles/s41467-021-22197-x

BibTeX

@article{Wang_2021_scGNN,
	author = {Juexin Wang, Anjun Ma, Yuzhou Chang, Jianting Gong, Yuexu Jiang, Hongjun Fu, Cankun Wang, Ren Qi, Qin Ma, Dong Xu},
	title = {cGNN is a novel graph neural network framework for single-cell RNA-Seq analyses},
	year = {2021},
	doi = {10.1038/s41467-021-22197-x},
	publisher = {Springer Nature},
	journal = {Nature Communications}
}

Installation:

Installation Tested on Ubuntu 16.04, CentOS 7, MacOS catalina with Python 3.6.8 on one NVIDIA RTX 2080Ti GPU.

From Source:

Start by grabbing this source codes:

git clone https://github.com/juexinwang/scGNN.git
cd scGNN

Option 1 : (Recommended) Use python virutal environment with conda(https://anaconda.org/

conda create -n scgnnEnv python=3.6.8 pip
conda activate scgnnEnv
pip install -r requirements.txt

If want to use LTMG (Recommended but Optional, will takes extra time in data preprocessing):

conda install r-devtools
conda install -c cyz931123 r-scgnnltmg

Option 2 : Direct install individually

Need to install R packages first, tested on R >=3.6.1:

In R command line:

install.packages("devtools")
library(devtools)
install_github("BMEngineeR/scGNNLTMG")

Then install all python packages in bash.

pip install -r requirements.txt

Option 3: Use Docker (Temporarily not available)

Download and install docker.

Pull docker image gongjt057/scgnn from the dockerhub. Please beware that this image is huge for it includes all the environments. To get this docker image as base image type the command as shown in the below:

docker pull gongjt057/scgnn:code

Type docker images to see the list of images you have downloaded on your machine. If gongjt057/scgnn in the list, download it successfully.

Run a container from the image.

docker run -it gongjt057/scgnn:code /bin/bash
cd /scGNN/scGNN

Then you can proceed to the next step.

Quick Start

scGNN accepts scRNA-seq data format: CSV and 10X

1. Prepare datasets

CSV format

Take an example of Alzheimer’s disease datasets (GSE138852) analyzed in the manuscript.

mkdir GSE138852
wget -P GSE138852/ https://ftp.ncbi.nlm.nih.gov/geo/series/GSE138nnn/GSE138852/suppl/GSE138852_counts.csv.gz

10X format

Take an example of liver cellular landscape study from human cell atlas(https://data.humancellatlas.org/). Click the download link of 'homo_sapiens.mtx.zip' in the page, and get 4d6f6c96-2a83-43d8-8fe1-0f53bffd4674.homo_sapiens.mtx.zip. (It looks like they does not provide direct download link anymore)

mkdir liver
cd liver
mv ~/Download/4d6f6c96-2a83-43d8-8fe1-0f53bffd4674.homo_sapiens.mtx.zip .
unzip 4d6f6c96-2a83-43d8-8fe1-0f53bffd4674.homo_sapiens.mtx.zip
cd ..

2. Preprocess input files

This step generates Use_expression.csv (preprocessed file) and gets discretized regulatory signals as ltmg.csv from Left-Trunctruncated-Mixed-Gaussian(LTMG) model (Optional but recommended).

In preprocessing, parameters are used:

  • filetype defines file type (CSV or 10X(default))
  • geneSelectnum selects a number of most variant genes. The default gene number is 2000
  • inferLTMGTag (Optional) add --inferLTMGTag to infer LTMG in preprocessing. Need to install r-scgnnltmg. The running time of inferring LTMG is depended on the cell number and gene number selected, i.e. ~10 minutes in GSE138852 and extra ~13 minutes in data liver.

CSV format

Cell/Gene filtering without inferring LTMG:

python -W ignore PreprocessingscGNN.py --datasetName GSE138852_counts.csv.gz --datasetDir GSE138852/ --LTMGDir GSE138852/ --filetype CSV --geneSelectnum 2000

(Optional) Cell/Gene filtering and inferring LTMG:

python -W ignore PreprocessingscGNN.py --datasetName GSE138852_counts.csv.gz --datasetDir GSE138852/ --LTMGDir GSE138852/ --filetype CSV --geneSelectnum 2000 --inferLTMGTag

10X format

Cell/Gene filtering without inferring LTMG:

python -W ignore PreprocessingscGNN.py --datasetName 481193cb-c021-4e04-b477-0b7cfef4614b.mtx --datasetDir liver/ --LTMGDir liver/ --geneSelectnum 2000 sparseOut

(Optional) Cell/Gene filtering and inferring LTMG:

python -W ignore PreprocessingscGNN.py --datasetName 481193cb-c021-4e04-b477-0b7cfef4614b.mtx --datasetDir liver/ --LTMGDir liver/ --geneSelectnum 2000 --inferLTMGTag

3. Run scGNN

We take an example of an analysis in GSE138852. Here we use parameters to demo purposes:

  • batch-size defines batch-size of the cells for training
  • EM-iteration defines the number of iteration, default is 10, here we set as 2.
  • quickmode for bypassing cluster autoencoder.
  • Regu-epochs defines epochs in feature autoencoder, default is 500, here we set as 50.
  • EM-epochs defines epochs in feature autoencoder in the iteration, default is 200, here we set as 20.
  • no-cuda defines devices in usage. Default is using GPU, add --no-cuda in command line if you only have CPU.
  • regulized-type (Optional) defines types of regulization, default is noregu for not using LTMG as regulization. User can add --regulized-type LTMG to enable LTMG.

If you want to reproduce results in the manuscript, please use default parameters.

CSV format

For CSV format, we need add --nonsparseMode

Without LTMG:

python -W ignore scGNN.py --datasetName GSE138852 --datasetDir ./  --outputDir outputdir/ --EM-iteration 2 --Regu-epochs 50 --EM-epochs 20 --quickmode --nonsparseMode

(Optional) Using LTMG:

python -W ignore scGNN.py --datasetName GSE138852 --datasetDir ./ --LTMGDir ./ --outputDir outputdir/ --EM-iteration 2 --Regu-epochs 50 --EM-epochs 20 --quickmode --nonsparseMode --regulized-type LTMG

10X format

Without LTMG:

python -W ignore scGNN.py --datasetName 481193cb-c021-4e04-b477-0b7cfef4614b.mtx --datasetDir liver/ --outputDir outputdir/ --EM-iteration 2 --Regu-epochs 50 --EM-epochs 20 --quickmode

(Optional) Using LTMG:

python -W ignore scGNN.py --datasetName 481193cb-c021-4e04-b477-0b7cfef4614b.mtx --LTMGDir liver/ --datasetDir liver/ --outputDir outputdir/ --EM-iteration 2 --Regu-epochs 50 --EM-epochs 20 --quickmode --regulized-type LTMG

On these demo dataset using single cpu, the running time of demo codes is ~33min/26min. User should get exact same results as paper shown with full running time on single cpu for ~6 hours. If user wants to use multiple CPUs, parameter --coresUsage can be set as all or any number of cores the machine has.

4. Check Results

In outputdir now, we have four output files.

  • *_recon.csv: Imputed gene expression matrix. Row as gene, col as cell. First row as gene name, First col as the cell name.

  • *_embedding.csv: Learned embedding (features) for clustering. Row as cell, col as embeddings. First row as the embedding names (no means). First col as the cell name.

  • *_graph.csv: Learned graph edges of the cell graph in tuples: nodeA,nodeB,weights. First row as the name.

  • *_results.txt: Identified cell types. First row as the name.

For a complete list of options provided by scGNN:

python scGNN.py --help

More information can be checked at the tutorial.

Another repository for reviewers is located at here.

Notes:

We recommend users to infer LTMG from their datasets. LTMG can improve performance on our benchmarks despite it consumes extra time in data preprocessing. We also provide supports without LTMG to save running time.

History:

  • 2021-11-10: Fix a bug causing cluster autoencoder and iteration problems.

Reference:

  1. VAE https://github.com/pytorch/examples/tree/master/vae
  2. GAE https://github.com/tkipf/gae/tree/master/gae
  3. scVI-reproducibility https://github.com/romain-lopez/scVI-reproducibility
  4. LTMG https://academic.oup.com/nar/article/47/18/e111/5542876

Contact:

Juexin Wang: [email protected]

Anjun Ma: [email protected]

Qin Ma: [email protected]

Dong Xu: [email protected]

About

scGNN (single cell graph neural networks) for single cell clustering and imputation using graph neural networks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%