forked from juexinwang/scGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
clustering_metric.py
96 lines (79 loc) · 3.97 KB
/
clustering_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from sklearn import metrics
from munkres import Munkres
import numpy as np
from sklearn.manifold import TSNE
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# Tmp
# Ref: https://github.com/MysteryVaibhav/RWR-GAE
class clustering_metrics:
def __init__(self, true_label, predict_label):
self.true_label = true_label
self.pred_label = predict_label
def clusteringAcc(self):
# best mapping between true_label and predict label
l1 = list(set(self.true_label))
numclass1 = len(l1)
l2 = list(set(self.pred_label))
numclass2 = len(l2)
if numclass1 != numclass2:
print('Class Not equal, Error!!!!')
return 0
cost = np.zeros((numclass1, numclass2), dtype=int)
for i, c1 in enumerate(l1):
mps = [i1 for i1, e1 in enumerate(self.true_label) if e1 == c1]
for j, c2 in enumerate(l2):
mps_d = [i1 for i1 in mps if self.pred_label[i1] == c2]
cost[i][j] = len(mps_d)
# match two clustering results by Munkres algorithm
m = Munkres()
cost = cost.__neg__().tolist()
indexes = m.compute(cost)
# get the match results
new_predict = np.zeros(len(self.pred_label))
for i, c in enumerate(l1):
# correponding label in l2:
c2 = l2[indexes[i][1]]
# ai is the index with label==c2 in the pred_label list
ai = [ind for ind, elm in enumerate(self.pred_label) if elm == c2]
new_predict[ai] = c
acc = metrics.accuracy_score(self.true_label, new_predict)
f1_macro = metrics.f1_score(self.true_label, new_predict, average='macro')
precision_macro = metrics.precision_score(self.true_label, new_predict, average='macro')
recall_macro = metrics.recall_score(self.true_label, new_predict, average='macro')
f1_micro = metrics.f1_score(self.true_label, new_predict, average='micro')
precision_micro = metrics.precision_score(self.true_label, new_predict, average='micro')
recall_micro = metrics.recall_score(self.true_label, new_predict, average='micro')
return acc, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro
def evaluationClusterModelFromLabel(self, tqdm):
nmi = metrics.normalized_mutual_info_score(self.true_label, self.pred_label)
adjscore = metrics.adjusted_rand_score(self.true_label, self.pred_label)
acc, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro = self.clusteringAcc()
tqdm.write(
'ACC=%f, f1_macro=%f, precision_macro=%f, recall_macro=%f, f1_micro=%f, precision_micro=%f, recall_micro=%f, NMI=%f, ADJ_RAND_SCORE=%f' % (
acc, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro, nmi, adjscore))
# fh = open('recoder.txt', 'a')
#
# fh.write(
# 'ACC=%f, f1_macro=%f, precision_macro=%f, recall_macro=%f, f1_micro=%f, precision_micro=%f, recall_micro=%f, NMI=%f, ADJ_RAND_SCORE=%f' % (
# acc, f1_macro, precision_macro, recall_macro, f1_micro, precision_micro, recall_micro, nmi, adjscore))
# fh.write('\r\n')
# fh.flush()
# fh.close()
return acc, nmi, adjscore
@staticmethod
def plot(X, fig, col, size, true_labels):
ax = fig.add_subplot(1, 1, 1)
for i, point in enumerate(X):
ax.scatter(point[0], point[1], s=size, c=col[true_labels[i]])
def plotClusters(self, tqdm, hidden_emb, true_labels):
tqdm.write('Start plotting using TSNE...')
# Doing dimensionality reduction for plotting
tsne = TSNE(n_components=2)
X_tsne = tsne.fit_transform(hidden_emb)
# Plot figure
fig = plt.figure()
self.plot(X_tsne, fig, ['red', 'green', 'blue', 'brown', 'purple', 'yellow', 'pink', 'orange'], 4, true_labels)
fig.savefig("plot.png")
tqdm.write("Finished plotting")