FlightSims.jl is a general-purpose numerical simulator supporting nested environments and convenient macro-based data logging.
Main APIs can be found in FSimBase.jl.
In FlightSims.jl, the default differential equation (DE) solver is Tsit5()
for ordinary DE (ODE).
If you want more functionality, please feel free to report an issue!
- Environments usually stand for dynamical systems but also include other utilities, for example, controllers.
- One can generate user-defined nested environments using provided APIs. Also, some predefined environments are provided for reusability. Take a look at FSimZoo.jl.
- Some utilities are also provided for dynamical system simulation.
- Examples include
- Simulation rendering
- See FSimPlots.jl. Note that FSimPlots.jl is not exported in the default setting to reduce precompilation time.
- ROS2 compatibility
- See FSimROS.jl. Note that FSimROS.jl is not exported in the default setting.
- Simulation rendering
- For minimal examples of FlightSims.jl, see FSimBase.jl.
- See
test/environments/basics/discrete_problem.jl
.
using DifferentialEquations
function main()
t0, tf = 0, 10
x0 = [1.0, 2, 3]
"""
dx: next x
"""
@Loggable function dynamics!(dx, x, p, t; u)
@log x
dx .= 0.99*x + u
@onlylog u_next = dx
end
simulator = Simulator(x0, apply_inputs(dynamics!; u=zeros(3));
Problem=:Discrete,
tf=tf, # default step length = 1 for Discrete problem
)
df = solve(simulator)
end
julia> main()
11×2 DataFrame
Row │ time sol
│ Float64 NamedTup…
─────┼────────────────────────────────────────────
1 │ 0.0 (u_next = [0.99, 1.98, 2.97], x …
2 │ 1.0 (u_next = [0.9801, 1.9602, 2.940…
3 │ 2.0 (u_next = [0.970299, 1.9406, 2.9…
4 │ 3.0 (u_next = [0.960596, 1.92119, 2.…
5 │ 4.0 (u_next = [0.95099, 1.90198, 2.8…
6 │ 5.0 (u_next = [0.94148, 1.88296, 2.8…
7 │ 6.0 (u_next = [0.932065, 1.86413, 2.…
8 │ 7.0 (u_next = [0.922745, 1.84549, 2.…
9 │ 8.0 (u_next = [0.913517, 1.82703, 2.…
10 │ 9.0 (u_next = [0.904382, 1.80876, 2.…
11 │ 10.0 (u_next = [0.895338, 1.79068, 2.…
- For an example of infinite-horizon continuous-time linear quadratic regulator (LQR) with callbacks,
see the following example code (
test/environments/basics/lqr.jl
).
using FlightSims
const FS = FlightSims
using DifferentialEquations
using LinearAlgebra
using Plots
using Test
function main()
# linear system
A = [0 1;
0 0] # 2 x 2
B = [0 1]' # 2 x 1
n, m = 2, 1
env = LinearSystem(A, B) # exported from FlightSims
x0 = State(env)([0.5, 0.5])
# optimal control
Q = Matrix(I, n, n)
R = 10.0*Matrix(I, m, m)
lqr = LQR(A, B, Q, R) # exported from FlightSims
u_lqr = Command(lqr) # (x, p, t) -> -K*x; minimise J = ∫ (x' Q x + u' R u) from 0 to ∞
u0 = u_lqr(x0)
p0 = zeros(size(u0)...) # auxiliary parameter
# simulation
Δt = 0.05
tf = 10.0
affect!(integrator) = integrator.p .= u_lqr(copy(integrator.u)) # auxiliary callback funciton
cb = PeriodicCallback(affect!, Δt; initial_affect=true) # auxiliary callback
@Loggable function dynamics!(dx, x, p, t)
@onlylog p # activate this line only when logging data
u = p
@log x, u
@nested_log Dynamics!(env)(dx, x, p, t; u=u) # exported `state` and `input` from `Dynamics!(env)`
end
simulator = Simulator(x0, dynamics!, p0;
tf=tf)
df = solve(
simulator;
callback=cb, savestep=Δt,
dtmax=Δt/2,
)
# CAUTION: when using PeriodicCallback for MPC-like control, the initial input may be overwritten by the second input.
# I guess that the adaptive solver "goes back in time" when `dt` is not set small enough, which violates the results with Callbacks including SavingCallback and PeriodicCallback.
ts = df.time
xs = [datum.x for datum in df.sol]
us = [datum.u for datum in df.sol]
ps = [datum.p for datum in df.sol]
states = [datum.state for datum in df.sol]
inputs = [datum.input for datum in df.sol]
@test u0 == us[1]
@test xs == states
@test us == inputs
p_x = plot(ts, hcat(states...)';
title="state variable", label=["x1" "x2"], color=[:black :black], lw=1.5,
) # Plots
plot!(p_x, ts, hcat(ps...)';
ls=:dash, label="param", color=[:red :orange], lw=1.5
)
p_u = plot(ts, hcat(inputs...)'; title="control input", label="u", seriestype=:steppost) # Plots
fig = plot(p_x, p_u; layout=(2, 1))
mkpath("figures")
savefig(fig, "figures/lqr.png")
display(fig)
df
end
@testset "lqr example" begin
main()
end
julia> main()
1001×2 DataFrame
Row │ time sol
│ Float64 NamedTup…
──────┼────────────────────────────────────────────
1 │ 0.0 (p = [1.01978, 1.95564], state =…
2 │ 0.01 (p = [1.01978, 1.95564], state =…
3 │ 0.02 (p = [1.03911, 1.91186], state =…
4 │ 0.03 (p = [1.05802, 1.86863], state =…
5 │ 0.04 (p = [1.07649, 1.82596], state =…
⋮ │ ⋮ ⋮
998 │ 9.97 (p = [-0.00093419, 0.00103198], …
999 │ 9.98 (p = [-0.000923913, 0.00102347],…
1000 │ 9.99 (p = [-0.00091372, 0.001015], st…
1001 │ 10.0 (p = [-0.00091372, 0.001015], st…
992 rows omitted
- Note that this example utilises interactive simulation interface. See
test/environments/integrated_environments/linear_system_zoh_input.jl
.
using FlightSims
import FlightSims: State, Dynamics!
using DataFrames
using ComponentArrays
using UnPack
using Transducers
using Plots
using SciMLBase
using Test
struct LinearSystem_ZOH_Input <: AbstractEnv
linear_env::LinearSystem
end
function State(env::LinearSystem_ZOH_Input)
State(env.linear_env)
end
function Dynamics!(env::LinearSystem_ZOH_Input)
@Loggable function dynamics!(dx, x, input, t)
@nested_log Dynamics!(env.linear_env)(dx, x, nothing, t; u=input)
end
end
function main()
A = [0 1;
0 0]
B = [0 1]'
linear_env = LinearSystem(A, B)
env = LinearSystem_ZOH_Input(linear_env)
x0_state = [1, 2]
input = zeros(1)
x0 = State(env)(x0_state)
t0 = 0.0
tf = 20.0
simulator = Simulator(x0, Dynamics!(env), input; tf=tf)
# interactive sim
Δt = 0.1 # save period
df = DataFrame()
@time for (i, t) in enumerate(t0:Δt:tf)
# To perform interactive simulation,
# you should be aware of the integrator interface
# provided by DifferentialEquations.jl;
# see https://diffeq.sciml.ai/stable/basics/integrator/#integrator
# e.g., DO NOT directly change the integrator state
state = simulator.integrator.u
input = simulator.integrator.p
if (i-1) % 10 == 0 # update input period
input .= -sum(state)
end
step_until!(simulator, t, df)
end
# plot
ts = df.time
states = df.sol |> Map(datum -> datum.state) |> collect
inputs = df.sol |> Map(datum -> datum.input) |> collect
p_x = plot(ts, hcat(states...)';
title="state variable", label=["x1" "x2"],
)
p_u = plot(ts, hcat(inputs...)';
title="input variable", label="u",
linetype=:steppost, # to plot zero-order-hold input appropriately
)
fig = plot(p_x, p_u; layout=(2, 1))
savefig("figures/interactive_sim.png")
display(fig)
end
@testset "linear_system_zoh_input" begin
main()
end
- For an example of backstepping position tracking controller for quadcopters,
see
test/environments/integrated_environments/backstepping_position_controller_static_allocator_multicopter_env.jl
. See./test/environments/controllers/geometric_tracking.jl
and./test/environments/controllers/geometric_tracking_inner_outer.jl
for the geometric tracking controller.
For examples of CBF methods, see ./test/environments/controllers/cbf.jl
.
- See
test/pluto_guidance.jl
(thanks to @nhcho91).
- For more details, see FSimPlots.jl.
See FSimROS.jl.
- FSimBase.jl is the lightweight base package for numerical simulation supporting nested dynamical systems and macro-based data logger. For more functionality, see FlightSims.jl.
- FSimZoo.jl contains predefined environments and controllers for FlightSims.jl.
- FSimPlots.jl is the plotting package for predefined environments exported from FlightSims.jl
- FSimROS.jl is a package of FlightSims.jl family for ROS2.
- FaultTolerantControl.jl: fault tolerant control (FTC) with various models and algorithms of faults, fault detection and isolation (FDI), and reconfiguration (R) control.
- FlightGNC.jl (@nhcho91): FlightGNC.jl is a Julia package containing GNC algorithms for autonomous systems.
- It is highly based on DifferentialEquations.jl but mainly focusing on ODE (ordinary differential equations).
- The construction of nested environments are based on ComponentArrays.jl.
- The structure of the resulting data from simulation result is based on DataFrames.jl.
- Logging tool is based on SimulationLogger.jl.
- Please check whether you put
@Loggable
in front of the dynamics function in a proper way, e.g.,
function Dynamics!(env::MyEnv)
@Loggable function dynamics!(dx, x, p, t; u)
# return @Loggable dynamics!(dx, x, p, t; u) # This would not work
# blahblah...
end
end
@Loggable
does not work; ERROR: LoadError: LoadError: LoadError: LoadError: LoadError: LoadError: KeyError: key :name not found
- Please check whether you assigned a name of function annotated by
@Loggable
, e.g.,
function Dynamics!(env::YourEnv)
@Loggable function dynamics!(dX, X, p, ; u)
...
end
end
instead of
function Dynamics!(env::YourEnv)
@Loggable function (dX, X, p, ; u)
...
end
end
The first input of the logged inputs is incorrect when using PeriodicCallback for zero-order-hold (ZOH) control (#161)
Due to the adaptive-time-step solver, it might "go back in time", which contradicts the saved results from SavingCallback with the applied input using PeriodicCallback.
If the time step of PeriodicCallback is Δt
, then set the keyword argument dtmax
of solve
to be small, e.g., dtmax = Δt/2
(see ./test/environments/basics/lqr.jl
as an example.)