-
Notifications
You must be signed in to change notification settings - Fork 53
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
86 changed files
with
5,242 additions
and
3,505 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
[flake8] | ||
max-line-length = 90 | ||
exclude = file1.py, **/__init__.py | ||
exclude = ./Chapter08-FinalProject/OccNet/projects/mmdet3d_plugin/bevformer/modules/voxel_encoder.py, **/__init__.py | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,7 +2,7 @@ | |
* @Author: Charmve [email protected] | ||
* @Date: 2023-10-10 10:49:13 | ||
* @LastEditors: Charmve [email protected] | ||
* @LastEditTime: 2024-01-31 22:58:00 | ||
* @LastEditTime: 2024-02-02 01:16:50 | ||
* @FilePath: /OccNet-Course/Chapter07-课程展望与总结/README.md | ||
* @Version: 1.0.1 | ||
* @Blogs: charmve.blog.csdn.net | ||
|
@@ -16,12 +16,19 @@ | |
|
||
在本专题课程的课程展望和总结中,主要从算法框架、数据、仿真和其他四个方面做未来展望,以及对本课程做一个总结。 | ||
|
||
- <b>算法框</b> | ||
- 数据驱动的端到端 UniAD | ||
- <b>算法框架</b> | ||
- 数据驱动的端到端 [UniAD](https://github.com/OpenDriveLab/UniAD) | ||
- https://mp.weixin.qq.com/s/qcNtRsBD5aadkavU9TfpFA | ||
- https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving | ||
- End-to-end Interpretable Neural Motion Planner [paper](https://arxiv.org/abs/2101.06679) | ||
- End-to-End Learning of Driving Models with Surround-View Cameras and Route Planners [paper](https://arxiv.org/abs/1803.10158) | ||
- https://github.com/E2E-AD/AD-MLP | ||
- https://github.com/OpenDriveLab/ST-P3 | ||
- 大模型 LMDrive [关于大模型和自动驾驶的几个迷思](关于大模型和自动驾驶的几个迷思.md) | ||
- ST-P3 [paper](https://arxiv.org/abs/2207.07601) | [code](https://github.com/OpenDriveLab/ST-P3) | ||
- MP3 [paper](https://arxiv.org/abs/2101.06806) | [video](https://www.bilibili.com/video/BV1tQ4y1k7BX) | ||
- TCP [NeurIPS 2022] Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline. [paper](https://arxiv.org/abs/2206.08129) | [video](https://www.bilibili.com/video/BV1Pe4y1x7E3/?spm_id_from=333.337.search-card.all.click&vd_source=57394ba751fad8e6886be567cccfa5bb) |[code](https://github.com/OpenDriveLab/TCP) | ||
- 鉴智机器人 GraphAD | ||
- | ||
- 大模型 [LMDrive](https://github.com/opendilab/LMDrive) [关于大模型和自动驾驶的几个迷思](关于大模型和自动驾驶的几个迷思.md) | ||
- 世界模型:Drive-WM、DriveDreamer | ||
- 矢量地图在线建图:MapTRv2、ScalableMap、VectorMapNet、HDMapNet、GeMap、MapEX | ||
- BEV-OCC-Transformer: OccFormer、OccWorld、Occupancy Flow | ||
|
@@ -30,14 +37,17 @@ | |
- 4D数据自动标注: | ||
- OCC与Nerf联合标注 | ||
- [面向BEV感知的4D标注方案](https://zhuanlan.zhihu.com/p/642735557?utm_psn=1706841959639998464) | ||
- 数据生成:DrivingDiffusion、[MagicDrive](https://zhuanlan.zhihu.com/p/675303127)、UrbanSyn | ||
- 数据合成:DrivingDiffusion、[MagicDrive](https://zhuanlan.zhihu.com/p/675303127)、UrbanSyn | ||
- https://github.com/runnanchen/CLIP2Scene | ||
|
||
- <b>仿真</b> | ||
- UniSim | ||
- [UniSim](https://waabi.ai/unisim/) | ||
- DRIVE Sim | ||
|
||
- <b>其他</b> | ||
- 舱驾一体 | ||
- AI 编译器: MLIR、TVM、XLA、Triton | ||
- 模型剪枝、模型蒸馏、模型压缩、模型量化(PTQ、QAT) | ||
|
||
|
||
关注科技前沿公司:[Waabi](https://waabi.ai/unisim/)、[Wayve](https://wayve.ai/) |
66 changes: 36 additions & 30 deletions
66
Chapter08-FinalProject/OccNet/projects/configs/_base_/datasets/coco_instance.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,48 +1,54 @@ | ||
dataset_type = 'CocoDataset' | ||
data_root = 'data/coco/' | ||
dataset_type = "CocoDataset" | ||
data_root = "data/coco/" | ||
img_norm_cfg = dict( | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) | ||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True | ||
) | ||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='LoadAnnotations', with_bbox=True, with_mask=True), | ||
dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), | ||
dict(type='RandomFlip', flip_ratio=0.5), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size_divisor=32), | ||
dict(type='DefaultFormatBundle'), | ||
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']), | ||
dict(type="LoadImageFromFile"), | ||
dict(type="LoadAnnotations", with_bbox=True, with_mask=True), | ||
dict(type="Resize", img_scale=(1333, 800), keep_ratio=True), | ||
dict(type="RandomFlip", flip_ratio=0.5), | ||
dict(type="Normalize", **img_norm_cfg), | ||
dict(type="Pad", size_divisor=32), | ||
dict(type="DefaultFormatBundle"), | ||
dict(type="Collect", keys=["img", "gt_bboxes", "gt_labels", "gt_masks"]), | ||
] | ||
test_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type="LoadImageFromFile"), | ||
dict( | ||
type='MultiScaleFlipAug', | ||
type="MultiScaleFlipAug", | ||
img_scale=(1333, 800), | ||
flip=False, | ||
transforms=[ | ||
dict(type='Resize', keep_ratio=True), | ||
dict(type='RandomFlip'), | ||
dict(type='Normalize', **img_norm_cfg), | ||
dict(type='Pad', size_divisor=32), | ||
dict(type='ImageToTensor', keys=['img']), | ||
dict(type='Collect', keys=['img']), | ||
]) | ||
dict(type="Resize", keep_ratio=True), | ||
dict(type="RandomFlip"), | ||
dict(type="Normalize", **img_norm_cfg), | ||
dict(type="Pad", size_divisor=32), | ||
dict(type="ImageToTensor", keys=["img"]), | ||
dict(type="Collect", keys=["img"]), | ||
], | ||
), | ||
] | ||
data = dict( | ||
samples_per_gpu=2, | ||
workers_per_gpu=2, | ||
train=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'annotations/instances_train2017.json', | ||
img_prefix=data_root + 'train2017/', | ||
pipeline=train_pipeline), | ||
ann_file=data_root + "annotations/instances_train2017.json", | ||
img_prefix=data_root + "train2017/", | ||
pipeline=train_pipeline, | ||
), | ||
val=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'annotations/instances_val2017.json', | ||
img_prefix=data_root + 'val2017/', | ||
pipeline=test_pipeline), | ||
ann_file=data_root + "annotations/instances_val2017.json", | ||
img_prefix=data_root + "val2017/", | ||
pipeline=test_pipeline, | ||
), | ||
test=dict( | ||
type=dataset_type, | ||
ann_file=data_root + 'annotations/instances_val2017.json', | ||
img_prefix=data_root + 'val2017/', | ||
pipeline=test_pipeline)) | ||
evaluation = dict(metric=['bbox', 'segm']) | ||
ann_file=data_root + "annotations/instances_val2017.json", | ||
img_prefix=data_root + "val2017/", | ||
pipeline=test_pipeline, | ||
), | ||
) | ||
evaluation = dict(metric=["bbox", "segm"]) |
Oops, something went wrong.