-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Issue 340: Remove nan handling (#415)
* remove nan handling * get rid of all NB padding and clamping * remove nan handling * get rid of all NB padding and clamping * remove overflow test * Add `rand` safe version of Poisson and Negative binomial distributions (#418) * SafePoisson with safety for large means * better selection for conversion to Int or BigInt * add SafeNegativeBinomial * add unit tests to doctests * reformat * Add type promotion so AD works with distribution constructor * Add logpdf grad call unit tests for Safe discrete dists * reformat * change neg bin param to (r, p) * Update utils.jl * reformat * change empirical var test to more principled approach * add default nadapts rather than just 50% of target sampling * Update NUTSampler.jl * set dist check_args = false * Set nadapts to Turing Default * reformat --------- Co-authored-by: Samuel Brand <[email protected]>
- Loading branch information
1 parent
bc99b2e
commit d834ace
Showing
9 changed files
with
606 additions
and
32 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
@doc raw" | ||
Create a Negative binomial distribution with the specified mean that avoids `InExactError` | ||
when the mean is too large. | ||
# Parameterisation: | ||
We are using a mean and cluster factorization of the negative binomial distribution such | ||
that the variance to mean relationship is: | ||
```math | ||
\sigma^2 = \mu + \alpha^2 \mu^2 | ||
``` | ||
The reason for this parameterisation is that at sufficiently large mean values (i.e. `r > 1 / p`) `p` is approximately equal to the | ||
standard fluctuation of the distribution, e.g. if `p = 0.05` we expect typical fluctuations of samples from the negative binomial to be | ||
about 5% of the mean when the mean is notably larger than 20. Otherwise, we expect approximately Poisson noise. In our opinion, this | ||
parameterisation is useful for specifying the distribution in a way that is easier to reason on priors for `p`. | ||
# Arguments: | ||
- `r`: The number of successes, although this can be extended to a continous number. | ||
- `p`: Success rate. | ||
# Returns: | ||
- A `SafeNegativeBinomial` distribution with the specified mean. | ||
# Examples: | ||
```jldoctest SafeNegativeBinomial | ||
using EpiAware, Distributions | ||
bigμ = exp(48.0) #Large value of μ | ||
σ² = bigμ + 0.05 * bigμ^2 #Large variance | ||
# We can calculate the success rate from the mean to variance relationship | ||
p = bigμ / σ² | ||
r = bigμ * p / (1 - p) | ||
d = SafeNegativeBinomial(r, p) | ||
# output | ||
EpiAware.EpiAwareUtils.SafeNegativeBinomial{Float64}(r=20.0, p=2.85032816548187e-20) | ||
``` | ||
```jldoctest SafeNegativeBinomial | ||
cdf(d, 100) | ||
# output | ||
0.0 | ||
``` | ||
```jldoctest SafeNegativeBinomial | ||
logpdf(d, 100) | ||
# output | ||
-850.1397180331871 | ||
``` | ||
```jldoctest SafeNegativeBinomial | ||
mean(d) | ||
# output | ||
7.016735912097631e20 | ||
``` | ||
```jldoctest SafeNegativeBinomial | ||
var(d) | ||
# output | ||
2.4617291430060293e40 | ||
``` | ||
" | ||
struct SafeNegativeBinomial{T <: Real} <: DiscreteUnivariateDistribution | ||
r::T | ||
p::T | ||
|
||
function SafeNegativeBinomial{T}(r::T, p::T) where {T <: Real} | ||
return new{T}(r, p) | ||
end | ||
end | ||
|
||
#Outer constructors make AD work | ||
function SafeNegativeBinomial(r::T, p::T) where {T <: Real} | ||
return SafeNegativeBinomial{T}(r, p) | ||
end | ||
|
||
SafeNegativeBinomial(r::Real, p::Real) = SafeNegativeBinomial(promote(r, p)...) | ||
|
||
# helper function | ||
_negbin(d::SafeNegativeBinomial) = NegativeBinomial(d.r, d.p; check_args = false) | ||
|
||
### Support | ||
|
||
Base.minimum(d::SafeNegativeBinomial) = 0 | ||
Base.maximum(d::SafeNegativeBinomial) = Inf | ||
Distributions.insupport(d::SafeNegativeBinomial, x::Integer) = x >= 0 | ||
|
||
#### Parameters | ||
|
||
Distributions.params(d::SafeNegativeBinomial) = _negbin(d) |> params | ||
Distributions.partype(::SafeNegativeBinomial{T}) where {T} = T | ||
|
||
Distributions.succprob(d::SafeNegativeBinomial) = _negbin(d).p | ||
Distributions.failprob(d::SafeNegativeBinomial{T}) where {T} = one(T) - _negbin(d).p | ||
|
||
#### Statistics | ||
|
||
Distributions.mean(d::SafeNegativeBinomial) = _negbin(d) |> mean | ||
Distributions.var(d::SafeNegativeBinomial) = _negbin(d) |> var | ||
Distributions.std(d::SafeNegativeBinomial) = _negbin(d) |> std | ||
Distributions.skewness(d::SafeNegativeBinomial) = _negbin(d) |> skewness | ||
Distributions.kurtosis(d::SafeNegativeBinomial) = _negbin(d) |> kurtosis | ||
Distributions.mode(d::SafeNegativeBinomial) = _negbin(d) |> mode | ||
function Distributions.kldivergence(p::SafeNegativeBinomial, q::SafeNegativeBinomial) | ||
kldivergence(_negbin(p), _negbin(q)) | ||
end | ||
|
||
#### Evaluation & Sampling | ||
|
||
Distributions.logpdf(d::SafeNegativeBinomial, k::Real) = logpdf(_negbin(d), k) | ||
|
||
Distributions.cdf(d::SafeNegativeBinomial, x::Real) = cdf(_negbin(d), x) | ||
Distributions.ccdf(d::SafeNegativeBinomial, x::Real) = ccdf(_negbin(d), x) | ||
Distributions.logcdf(d::SafeNegativeBinomial, x::Real) = logcdf(_negbin(d), x) | ||
Distributions.logccdf(d::SafeNegativeBinomial, x::Real) = logccdf(_negbin(d), x) | ||
Distributions.quantile(d::SafeNegativeBinomial, q::Real) = quantile(_negbin(d), q) | ||
Distributions.cquantile(d::SafeNegativeBinomial, q::Real) = cquantile(_negbin(d), q) | ||
Distributions.invlogcdf(d::SafeNegativeBinomial, lq::Real) = invlogcdf(_negbin(d), lq) | ||
Distributions.invlogccdf(d::SafeNegativeBinomial, lq::Real) = invlogccdf(_negbin(d), lq) | ||
|
||
## sampling | ||
function Base.rand(rng::AbstractRNG, d::SafeNegativeBinomial) | ||
if isone(d.p) | ||
return 0 | ||
else | ||
return rand(rng, SafePoisson(rand(rng, Gamma(d.r, (1 - d.p) / d.p)))) | ||
end | ||
end | ||
|
||
Distributions.mgf(d::SafeNegativeBinomial, t::Real) = mgf(_negbin(d), t) | ||
Distributions.cgf(d::SafeNegativeBinomial, t) = cgf(_negbin(d), t) | ||
Distributions.cf(d::SafeNegativeBinomial, t::Real) = cf(_negbin(d), t) |
Oops, something went wrong.