This is a collection of command line R scripts for analyzing spatial transcriptomics data. It is based on Seurat 3.2 workflows with a focus on multi-sample analyses (technical replicates and treatment/control pairs).
These scripts require Seurat 3.2 or later with Visium support.
If you are a conda user, you can find all dependencies available as conda packages in the conda_environment.yml file.
Otherwise install Seurat directly from CRAN:
install.packages("Seurat")
A few optional but recommended additional packages:
remotes::install_github("satijalab/seurat-wrappers")
remotes::install_github("navinlabcode/CellTrek")
# following packages not necessary with conda_environment.yml
BiocManager::install(c("batchelor",
"harmony",
"NMF",
"corrplot",
"optparse",
"pheatmap",
"patchwork"))
Common functionality in this toolkit are provided in an R package called
sttkit
. Install it from GitHub:
remotes::install_github('lima1/sttkit')
Start R and enter the following to get the path to the command line scripts:
system.file("extdata", package = "sttkit")
Exit R and store this path in an environment variable, for example in BASH:
export STTKIT="/path/to/sttkit/extdata"
Rscript $STTKIT/st_normalize.R --help
Usage: /path/to/sttkit/inst/extdata/st_normalize.R [options] ...
Some standard edits to H&E jpegs (obsolete with Visium).
Example:
Rscript $STTKIT/st_hejpeg.R --infile LP_L10012_S085_TGFB_EX2_LIB-026528rd1.jpg \
--outfile LIB-026528rd1_HE_bw_scaled.jpg --dither
A simple script that takes data from the ST pipeline and uses several Seurat features to normalize counts and to generate QC plots.
SpatialTranscriptomics example:
PIPELINE="standard"
Rscript $STTKIT/st_snormalize.R --infile $SAMPLE/${PIPELINE}_pipeline/${SAMPLE}_${PIPELINE}_ensembl_adjusted.tsv \
--sampleid $SAMPLE \
--hejpeg {SAMPLE}_HE_bw_scaled.jpg \
--outprefix OUTDIR/${PIPELINE}/$SAMPLE/normalize/$SAMPLE \
10X Visium SpaceRanger example:
PIPELINE="standard"
Rscript $STTKIT/st_normalize.R --spaceranger_dir $SAMPLE/${PIPELINE}_pipeline/ \
--sampleid $SAMPLE \
--outprefix OUTDIR/${PIPELINE}/$SAMPLE/normalize/$SAMPLE
This script will generate a few files with --outprefix
as filename prefix.
Note that --hejpeg
is ignored for Visium data.
Cluster the SpatialTranscriptomics data generated by st_normalize.R
Simple single-sample example:
Rscript $STTKIT/st_cluster.R \
--infile $OUTDIR/${PIPELINE}/$SAMPLE/normalize/serialize/${SAMPLE}_scaled.rds \
--outprefix OUTDIR/${PIPELINE}/$SAMPLE/cluster/$SAMPLE
Advanced multi-sample example with NMF clustering:
#! /bin/bash
#$ -S /bin/bash
#$ -pe orte 20 # number of parallel jobs
#$ -N Wtester
#$ -cwd
#$ -j y
#$ -o ${OUTDIR}/${NORMALIZATION_METHOD}/${PIPELINE}/${SAMPLE}/cluster
#$ -l h_rt=345600 #this need to adapted to your needs
#$ -l m_mem_free=4G #this need to adapted to your needs
mpirun --mca mpi_warn_on_fork 0 -v -np \$NSLOTS R --slave \
-f $STTKIT/st_cluster.R --args \
--infile lists/${SAMPLE}_${NORMALIZATION_METHOD}_spatial.list \
--labels lists/${SAMPLE}_labels.list \
--outprefix $OUTDIR/${NORMALIZATION_METHOD}/${PIPELINE}/$SAMPLE/cluster/$SAMPLE \
--gmt ../../signatures/all.gmt \
--extra_gmt ../../signatures/pathways_kegg.gmt \
--min_features $MIN_FEATURES \
--nmf --nmf_rank 4:16 --nmf_nruns \$NSLOTS $NMF_RANDOMIZE --nmf_method nsNMF \
--verbose --mpi
Since NMF clustering is slow, we may need to use the doMPI package to run in in
parallel (provide the --mpi
flag). This example shows that for multi-sample,
we provide --infile
a text file with suffix .list containing multiple input
files. For the non-default seurat2
or scran
normalizations, use the unscaled
${SAMPLE}_unscaled.rds
files to normalize all samples jointly before clustering.
We provide a --gmt
file with signatures of interest to make sure that the
corresponding genes are not filtered out for lower variance than other genes.
Gene signatures in --extra_gmt
are not forced to be included and instead
broadly tested against NMF cluster markers. This is useful for providing large
pathway databases such as KEGG or REACTOME.
We use the nsNMF algorithm instead of the default to get a more sparse solution at the cost of a significantly longer runtime.
Here the results of NMF clustering on the 10X mouse brain example data:
Note that the cluster ids are consistent across sections.
Takes the output of st_cluster.R
and gene signatures in GMT format as input
and plots signature scores (when a clustered RDS was provided, additional
signature per cluster plots will be generated)
Example:
Rscript $STTKIT/st_score.R \
--infile $OUTDIR/${PIPELINE}/$SAMPLE/normalize/serialize/${SAMPLE}_scaled.rds \
--gmt mm10_io_sigs.gmt \
--outprefix OUTDIR/${PIPELINE}/$SAMPLE/signatures/$SAMPLE
Advanced feature: --infile
can be again a list of input files (see
st_cluster.R
). In this case violin plots are generated to compare the
signatures across samples.
Compare Spatial data with bulk RNA-seq.
Example:
Rscript $STTKIT/st_benchmark.R \
--infile $OUTDIR/$PIPELINE/$SAMPLE/cluster/serialize/${SAMPLE}.rds \
--htseq ${SAMPLE_BULK}.gene_counts.cts \
--outprefix OUTDIR/${PIPELINE}/$SAMPLE/benchmark/$SAMPLE
Advanced feature: both --infile
and --htseq
can be again a list of input
files (see st_cluster.R
).
Integrates SpatialTranscriptomics with a (matched) scRNA reference. The default is simply following the Seurat best practices as outlined in their Spatial Vignette:
Rscript $STTKIT/st_integrate.R \
--infile $OUTDIR/$SAMPLE/cluster/serialize/${SAMPLE}.rds \
--outprefix $OUTDIR/$SAMPLE/integrate/$SAMPLE \
--singlecell allen_cortex.rds \
--labels_singlecell allen_cortex \
--refdata subclass
Here, the reference scRNA-seq dataset is expected to be normalized by sctransform
and
contains cell type annotation in a type
meta data column (the column can be changed
with --refdata
as in this example).
Again, --singlecell
can be a list of reference datasets.
We also support the CellTrek package that performs coembedding of the single-cell and spatial data to generate the training model. The single cells are then charted on to their spatial locations using non-linear interpolation to augment the ST spots.
We have adapted the same to work using command line inside of sttkit, and also splitting the various cell-types on to separate panels as shown below
Rscript $STTKIT/st_integrate.R \
--infile $OUTDIR/$SAMPLE/cluster/serialize/${SAMPLE}.rds \
--outprefix $OUTDIR/$SAMPLE/celltrek/$SAMPLE \
--singlecell allen_cortex.rds \
--labels_singlecell allen_cortex \
--refdata subclass --png --serialize \
--integration_method celltrek
The CellTrek::celltrek_vis
function uses RShiny to visualize all cell-types
in the mouse brain sample. We can easily load the celltrek
object in R:
cd $OUTDIR/$SAMPLE/celltrek
R
library(CellTrek)
library(dplyr)
options("browser" = "google-chrome")
# The serialized RDS object is a list for cases when multiple
# single cell references were provided
brain_celltrek <- readRDS("serialize/ex_sagittal_a2_celltrek.rds")[[1]]
brain_celltrek$cell_type <- factor(brain_celltrek$cell_type, levels=sort(unique(brain_celltrek$cell_type)))
CellTrek::celltrek_vis([email protected] %>% dplyr::select(coord_x, coord_y, cell_type:id_new),
brain_celltrek@images$ex_sagittal_a2@image, brain_celltrek@[email protected]$lowres)
Now choose cell_type
under "Color" and then click "Plot".
Imputes data from neighboring spots. Currently only BayesSpace supported.
Rscript $STTKIT/st_enhance.R \
--infile $OUTDIR/$SAMPLE/cluster/serialize/${SAMPLE}.rds \
--outprefix $OUTDIR/$SAMPLE/enhance/$SAMPLE \
When the provided --infile
contains SCTransform normalized data, it will
use those log counts. Otherwise BayesSpace's own normalization is used.
In the following we run sttkit
on 5 technical replicates of a breast cancer
sample.
PROJECT="/mnt/tmplabdata/ngdx/projects/dev/spatialTranscriptomics/NGDX-P00273"
PIPELINE="standard"
NORMALIZATION="sctransform"
OUTDIR="../../data/$NORMALIZATION"
MIN_FEATURES=400 # exclude spots with fewer than 400 detected genes
NUM_FEATURES=3000 # aim for including ~3000 genes
MIN_SPOTS=1 # include genes detected in a single spot
mkdir -p $OUTDIR/$PIPELINE
SAMPLES=("LIB-021633rd1" "LIB-021634rd1" "LIB-021635rd1" "LIB-021636rd1" "LIB-021637rd1" )
for SAMPLE in "${SAMPLES[@]}"
do
rm -rf $OUTDIR/$PIPELINE/$SAMPLE
SLIDE="ST_LP_L4_009_02JUN2018_Breast_EX2"
Rscript ~/git/CancerGenetics/ncgs-in-spatial_tools/sttkit/inst/extdata/st_normalize.R \
--infile $PROJECT/$SLIDE/$SAMPLE/${PIPELINE}_pipeline/${SAMPLE}_ensembl_adjusted.tsv \
--outprefix $OUTDIR/${PIPELINE}/$SAMPLE/normalize/$SAMPLE \
--sampleid $SAMPLE \
--hejpeg $PROJECT/$SLIDE/Images/${SAMPLE}_HE_bw_scaled.jpg \
--min_features $MIN_FEATURES \
--min_spots $MIN_SPOTS \
--num_features $NUM_FEATURES \
--normalization_method $NORMALIZATION
Rscript ~/git/CancerGenetics/ncgs-in-spatial_tools/sttkit/inst/extdata/st_cluster.R \
--infile $OUTDIR/$PIPELINE/$SAMPLE/normalize/serialize/${SAMPLE}_scaled.rds \
--outprefix $OUTDIR/$PIPELINE/$SAMPLE/cluster/$SAMPLE
done
# We can specify groups of samples and cluster them together.
#
# In this example, we use all high quality samples and name the group
# "all_good" (I'm very good at naming things...)
#
SAMPLES=("all_good")
for SAMPLE in "${SAMPLES[@]}"
do
rm -rf $OUTDIR/$PIPELINE/$SAMPLE
echo "#! /bin/bash
#$ -S /bin/bash
#$ -pe orte 20 # number or parallel jobs
#$ -N Wtester
#$ -cwd
#$ -j y
#$ -o $OUTDIR/$PIPELINE/${SAMPLE}/cluster
#$ -l h_rt=345600
#$ -l m_mem_free=8G
mpirun --mca mpi_warn_on_fork 0 -v -np \$NSLOTS R --slave \
-f ~/git/CancerGenetics/ncgs-in-spatial_tools/sttkit/inst/extdata/st_cluster.R \
--args --infile lists/${SAMPLE}_${NORMALIZATION}_spatial.list \
--outprefix $OUTDIR/$PIPELINE/${SAMPLE}/cluster/${SAMPLE} \
--nmf --nmf_ranks 2:12 --nmf_randomize --nmf_method nsNMF \
--png --force --mpi --verbose
" > ${OUTDIR}/$PIPELINE/$SAMPLE/${SAMPLE}_cluster.sh
qsub ${OUTDIR}/$PIPELINE/$SAMPLE/${SAMPLE}_cluster.sh
done
The .list file simply list input files line by line:
cat all_good_sctransform_spatial.list
../../data/sctransform/standard/LIB-021633rd1/normalize/serialize/LIB-021633rd1_scaled.rds
../../data/sctransform/standard/LIB-021634rd1/normalize/serialize/LIB-021634rd1_scaled.rds
../../data/sctransform/standard/LIB-021635rd1/normalize/serialize/LIB-021635rd1_scaled.rds
../../data/sctransform/standard/LIB-021636rd1/normalize/serialize/LIB-021636rd1_scaled.rds
../../data/sctransform/standard/LIB-021637rd1/normalize/serialize/LIB-021637rd1_scaled.rds