Skip to content
/ sttkit Public

Pipeline for SpatialTranscriptomics and 10X Visium data

License

Notifications You must be signed in to change notification settings

lima1/sttkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

README

This is a collection of command line R scripts for analyzing spatial transcriptomics data. It is based on Seurat 3.2 workflows with a focus on multi-sample analyses (technical replicates and treatment/control pairs).

The main purpose of this effort is to implement best practices that can be launched in automated pipelines. It further provides converter functions that make it easier to use methods implemented in different workspaces.

Installation

These scripts require Seurat 3.2 or later with Visium support. SpaceRanger 2.0 or later output requires Seurat 4.2 or later. SpaceRanger 3.0 currently requires the visium-hd branch from seurat and seurat-object GitHub repositories.

Dependencies

If you are a conda user, you can find all dependencies available as conda packages in the conda_environment.yml file.

Otherwise install Seurat directly from CRAN:

install.packages("Seurat")

A few optional additional packages extending functionality:

remotes::install_github("satijalab/seurat-wrappers")
remotes::install_github("navinlabcode/CellTrek")
remotes::install_github("dmcable/spacexr", build_vignettes = FALSE)

# following packages not necessary with conda_environment.yml
BiocManager::install(c("batchelor",
    "harmony",
    "NMF",
    "corrplot",
    "optparse",
    "pheatmap",
    "patchwork"))

For the scvi-tools wrapper, we recommend using our conda environment and additionally installing the following packages (using 'mamba' instead of 'conda' should be a major speedup):

conda install pytorch torchvision torchaudio "pytorch-cuda>=11.7" -c pytorch -c nvidia
conda install "jaxlib=*=*cuda*" jax cuda-nvcc -c conda-forge -c nvidia
conda install scvi-tools -c conda-forge

For cell2location, install scvi-tools as above and then install it via pip in the activate conda environment:

pip install cell2location[tutorials]

For Giotto, optionally if you use conda, install a few missing dependencies:

conda install r-terra r-checkmate r-pak r-rfast leidenalg python-louvain -c conda-forge

Then install it via pak in R:

pak::pkg_install("drieslab/Giotto")

sttkit

Common functionality in this toolkit are provided in an R package called sttkit. Install it from GitHub:

remotes::install_github('lima1/sttkit')

Start R and enter the following to get the path to the command line scripts:

system.file("extdata", package = "sttkit")

Exit R and store this path in an environment variable, for example in BASH:

export STTKIT="/path/to/sttkit/extdata"
Rscript $STTKIT/st_normalize.R --help
Usage: /path/to/sttkit/inst/extdata/st_normalize.R [options] ...

Tools

st_normalize.R

A simple script that takes data from the ST pipeline and uses several Seurat features to normalize counts and to generate QC plots.

10X Visium SpaceRanger example:

#  spaceranger_dir is the path to filtered_feature_bc_matrix.h5
Rscript $STTKIT/st_normalize.R --spaceranger_dir $SAMPLE/outs \
     --sampleid $SAMPLE \ 
     --outprefix OUTDIR/${PIPELINE}/$SAMPLE/normalize/$SAMPLE 

We can also additional gene annotation if needed:

#  spaceranger_dir is the path to filtered_feature_bc_matrix.h5
Rscript $STTKIT/st_normalize.R --spaceranger_dir $SAMPLE/outs \
     --sampleid $SAMPLE \ 
     --outprefix OUTDIR/${PIPELINE}/$SAMPLE/normalize/$SAMPLE \
     --gtf $REFERENCES/cellranger/refdata-cellranger-GRCh38-3.0.0/genes/genes.gtf \
     --spaceranger_probe_set $REFERENCES/spaceranger-2.1.0/probe_sets/Visium_Human_Transcriptome_Probe_Set_v2.0_GRCh38-2020-A.csv \

The GTF extracts a stable gene id such as ENSEMBL that can be used instead of the gene name. For FFPE Visium, we can provide probe information. Both can be accessed in R via the [[]] operator on the Spatial assay. In case SpaceRanger was run without probe filtering, features without included flag are ignored in the SCT assay.

head(ndata$Spatial[[]],2)
               gene_id symbol
OR4F5  ENSG00000186092  OR4F5
SAMD11 ENSG00000187634 SAMD11
                                                                                                                                                     probe_seqs
OR4F5  AATGGAGAAAGCCAATTCCCCATGTGACAGCCATAATGCCGACACATGCG
SAMD11 TGTCACCATCGCTGGCAGAGAAGCTGGGAGTTCGCTCCTTCTTCAGGTTC|[...]
         all.included included                       regions
OR4F5           FALSE    FALSE                     unspliced
SAMD11 TRUE|TRUE|TRUE     TRUE unspliced|unspliced|unspliced

SpatialTranscriptomics example:

PIPELINE="standard"
Rscript $STTKIT/st_snormalize.R --infile $SAMPLE/${PIPELINE}_pipeline/${SAMPLE}_${PIPELINE}_ensembl_adjusted.tsv \
     --sampleid $SAMPLE \ 
     --hejpeg {SAMPLE}_HE_bw_scaled.jpg \
     --outprefix OUTDIR/${PIPELINE}/$SAMPLE/normalize/$SAMPLE \

This script will generate a few files with --outprefix as filename prefix. Note that --hejpeg is ignored for Visium data.

ex_sagittal_1_he_counts

st_cluster.R

Cluster the SpatialTranscriptomics data generated by st_normalize.R

Simple single-sample example:

Rscript $STTKIT/st_cluster.R \
     --infile $OUTDIR/$SAMPLE/normalize/serialize/${SAMPLE}_scaled.rds \
     --outprefix OUTDIR/$SAMPLE/cluster/$SAMPLE 

ex_sagittal_1_he_cluster

Advanced multi-sample example with NMF clustering:

#! /bin/bash
#$ -S /bin/bash
#$ -pe orte 20 # number of parallel jobs
#$ -N Wtester
#$ -cwd
#$ -j y
#$ -o  ${OUTDIR}/${NORMALIZATION_METHOD}/${SAMPLE}/cluster
#$ -l h_rt=345600      #this need to adapted to your needs
#$ -l m_mem_free=4G    #this need to adapted to your needs
mpirun --mca mpi_warn_on_fork 0 -v -np \$NSLOTS  R --slave \
    -f $STTKIT/st_cluster.R --args \
    --infile lists/${SAMPLE}_${NORMALIZATION_METHOD}_spatial.list \
    --labels lists/${SAMPLE}_labels.list \
    --outprefix $OUTDIR/${NORMALIZATION_METHOD}/$SAMPLE/cluster/$SAMPLE \
    --gmt ../../signatures/all.gmt \
    --extra_gmt ../../signatures/pathways_kegg.gmt \
    --min_features $MIN_FEATURES \
    --nmf --nmf_rank 4:16 --nmf_nruns \$NSLOTS $NMF_RANDOMIZE --nmf_method nsNMF \
    --verbose --mpi

Since NMF clustering is slow, we may need to use the doMPI package to run in in parallel (provide the --mpi flag). This example shows that for multi-sample, we provide --infile a text file with suffix .list containing multiple input files. For the non-default seurat2 or scran normalizations, use the unscaled ${SAMPLE}_unscaled.rds files to normalize all samples jointly before clustering.

We provide a --gmt file with signatures of interest to make sure that the corresponding genes are not filtered out for lower variance than other genes. Gene signatures in --extra_gmt are not forced to be included and instead broadly tested against NMF cluster markers. This is useful for providing large pathway databases such as KEGG or REACTOME.

We use the nsNMF algorithm instead of the default to get a more sparse solution at the cost of a significantly longer runtime.

Here the results of NMF clustering on the 10X mouse brain example data:

all_he_nmf_cluster_9_ex_sagittal_1_small all_he_nmf_cluster_9_ex_sagittal_a1_small

Note that the cluster ids are consistent across sections.

st_score.R

Takes the output of st_cluster.R and gene signatures in GMT format as input and plots signature scores (when a clustered RDS was provided, additional signature per cluster plots will be generated)

Example:

Rscript $STTKIT/st_score.R \
    --infile $OUTDIR/$SAMPLE/normalize/serialize/${SAMPLE}_scaled.rds \
    --gmt mm10_io_sigs.gmt \
    --outprefix OUTDIR/$SAMPLE/signatures/$SAMPLE  

Advanced feature: --infile can be again a list of input files (see st_cluster.R). In this case violin plots are generated to compare the signatures across samples.

st_benchmark.R

Compare Spatial data with bulk RNA-seq.

Example:

Rscript $STTKIT/st_benchmark.R \
    --infile $OUTDIR/$SAMPLE/cluster/serialize/${SAMPLE}.rds \
    --htseq ${SAMPLE_BULK}.gene_counts.cts \
    --outprefix OUTDIR/$SAMPLE/benchmark/$SAMPLE  

Advanced feature: both --infile and --htseq can be again a list of input files (see st_cluster.R).

st_integrate.R

Integrates SpatialTranscriptomics with a (matched) scRNA reference. The default is simply following the Seurat best practices as outlined in their Spatial Vignette:

Rscript $STTKIT/st_integrate.R \
    --infile $OUTDIR/$SAMPLE/cluster/serialize/${SAMPLE}.rds \
    --outprefix $OUTDIR/$SAMPLE/integrate/$SAMPLE \
    --singlecell allen_cortex.rds \
    --labels_singlecell allen_cortex \
    --refdata subclass

Here, the reference scRNA-seq dataset is expected to be normalized by sctransform and contains cell type annotation in a type meta data column (the column can be changed with --refdata as in this example). Again, --singlecell can be a list of reference datasets. Specify --integration_method rctd to use RCDT, --integration_method scvi_destvi to use DestVI, --integration_method scvi_cell2location to use cell2location, or --integration_method giotto for SpatialDWLS from Giotto instead. Output files and plots are equivalent.

ex_sagittal_1_he_labels_allen_cortex_1_small ex_sagittal_a1_he_labels_allen_cortex_1_small

All celltype predictions can be easily loaded in Seurat and compared:

ls $OUTDIR/$SAMPLE/integrate/serialize/*transfer*
LIB-021633rd1_742abcb4d6052d8416d7d7a47d0f6749_giotto_transfer_predictions.rds
LIB-021633rd1_742abcb4d6052d8416d7d7a47d0f6749_rctd_multi_transfer_predictions.rds
LIB-021633rd1_742abcb4d6052d8416d7d7a47d0f6749_scvi_destvi_transfer_predictions.rds
LIB-021633rd1_742abcb4d6052d8416d7d7a47d0f6749_scvi_cell2location_transfer_predictions.rds
LIB-021633rd1_742abcb4d6052d8416d7d7a47d0f6749_seurat_transfer_predictions.rds

In R:

x <- readRDS("cluster/serialize/LIB-021633rd1.rds")
x$predictions <- readRDS("integrate/serialize/LIB-021633rd1_742abcb4d6052d8416d7d7a47d0f6749_rctd_transfer_predictions.rds")

This can now be used following the Seurat best practices.

We also provide a convenient way of averaging prediction in a simple consensus method:

files <- dir("integrate/serialize", pattern = "transfer_predictions.rds",
    full.names = TRUE)
tp_consensus <- find_assayobject_consensus(lapply(files, function(x)
    readRDS(x)[[1]]), labels = labels, plot_correlations = run_plots,
        plot_cor_method = "kendall")
x$predictions <- tp_consensus

We also support the CellTrek package that performs coembedding of the single-cell and spatial data to generate the training model. The single cells are then charted on to their spatial locations using non-linear interpolation to augment the ST spots. This method works especially well when matched single cell and spatial data are available.

We have adapted the same to work using command line inside of sttkit, and also splitting the various cell-types on to separate panels as shown below

 Rscript $STTKIT/st_integrate.R \
    --infile $OUTDIR/$SAMPLE/cluster/serialize/${SAMPLE}.rds \
    --outprefix $OUTDIR/$SAMPLE/celltrek/$SAMPLE \
    --singlecell allen_cortex.rds \
    --labels_singlecell allen_cortex \
    --refdata subclass --png --serialize \
    --integration_method celltrek

brain_he_celltrek_dots_labels_brain

ex_sagittal_1_he_celltrek_dots_labels_allen_cortex

The CellTrek::celltrek_vis function uses RShiny to visualize all cell-types in the mouse brain sample. We can easily load the celltrek object in R:

cd $OUTDIR/$SAMPLE/celltrek
R
library(CellTrek)
library(dplyr)
options("browser" = "google-chrome")
# The serialized RDS object is a list for cases when multiple
# single cell references were provided
brain_celltrek <- readRDS("serialize/ex_sagittal_a2_celltrek.rds")[[1]]
brain_celltrek$cell_type <- factor(brain_celltrek$cell_type, levels=sort(unique(brain_celltrek$cell_type)))
CellTrek::celltrek_vis([email protected] %>% dplyr::select(coord_x, coord_y, cell_type:id_new),
                       brain_celltrek@images$ex_sagittal_a2@image, brain_celltrek@[email protected]$lowres)

Now choose cell_type under "Color" and then click "Plot".

celltrek_example_output

st_enhance.R

Imputes data from neighboring spots. Currently only BayesSpace supported.

Rscript $STTKIT/st_enhance.R \
   --infile $OUTDIR/$SAMPLE/cluster/serialize/${SAMPLE}.rds \
   --outprefix $OUTDIR/$SAMPLE/enhance/$SAMPLE \

When the provided --infile contains SCTransform normalized data, it will use those log counts. Otherwise BayesSpace's own normalization is used.

mouse_10x_bayesspace

st_hejpeg.R

Some standard edits to H&E jpegs (obsolete with Visium).

Example:

Rscript $STTKIT/st_hejpeg.R  --infile LP_L10012_S085_TGFB_EX2_LIB-026528rd1.jpg \
    --outfile LIB-026528rd1_HE_bw_scaled.jpg --dither

Example workflow

In the following we run sttkit on 5 technical replicates of a breast cancer sample.

PROJECT="/mnt/tmplabdata/ngdx/projects/dev/spatialTranscriptomics/NGDX-P00273"
PIPELINE="standard"
NORMALIZATION="sctransform"
OUTDIR="../../data/$NORMALIZATION"
MIN_FEATURES=400   # exclude spots with fewer than 400 detected genes
NUM_FEATURES=3000  # aim for including ~3000 genes
MIN_SPOTS=1        # include genes detected in a single spot

mkdir -p $OUTDIR/$PIPELINE

SAMPLES=("LIB-021633rd1" "LIB-021634rd1" "LIB-021635rd1" "LIB-021636rd1" "LIB-021637rd1" )
for SAMPLE in "${SAMPLES[@]}"
do
    rm -rf $OUTDIR/$PIPELINE/$SAMPLE
    SLIDE="ST_LP_L4_009_02JUN2018_Breast_EX2"

    Rscript ~/git/CancerGenetics/ncgs-in-spatial_tools/sttkit/inst/extdata/st_normalize.R \
        --infile $PROJECT/$SLIDE/$SAMPLE/${PIPELINE}_pipeline/${SAMPLE}_ensembl_adjusted.tsv \
        --outprefix $OUTDIR/${PIPELINE}/$SAMPLE/normalize/$SAMPLE \
        --sampleid $SAMPLE \
        --hejpeg $PROJECT/$SLIDE/Images/${SAMPLE}_HE_bw_scaled.jpg \
        --min_features $MIN_FEATURES \
        --min_spots $MIN_SPOTS \
        --num_features $NUM_FEATURES \
        --normalization_method $NORMALIZATION

    Rscript ~/git/CancerGenetics/ncgs-in-spatial_tools/sttkit/inst/extdata/st_cluster.R \
        --infile $OUTDIR/$PIPELINE/$SAMPLE/normalize/serialize/${SAMPLE}_scaled.rds \
        --outprefix $OUTDIR/$PIPELINE/$SAMPLE/cluster/$SAMPLE 

done

# We can specify groups of samples and cluster them together.
#
# In this example, we use all high quality samples and name the group
# "all_good" (I'm very good at naming things...)
#
SAMPLES=("all_good")
for SAMPLE in "${SAMPLES[@]}"
do
    rm -rf $OUTDIR/$PIPELINE/$SAMPLE

echo "#! /bin/bash
#$ -S /bin/bash
#$ -pe orte 20 # number or parallel jobs
#$ -N Wtester
#$ -cwd
#$ -j y
#$ -o  $OUTDIR/$PIPELINE/${SAMPLE}/cluster
#$ -l h_rt=345600      
#$ -l m_mem_free=8G    
mpirun --mca mpi_warn_on_fork 0 -v -np \$NSLOTS  R --slave \
    -f ~/git/CancerGenetics/ncgs-in-spatial_tools/sttkit/inst/extdata/st_cluster.R \
    --args --infile lists/${SAMPLE}_${NORMALIZATION}_spatial.list \
    --outprefix $OUTDIR/$PIPELINE/${SAMPLE}/cluster/${SAMPLE} \
    --nmf --nmf_ranks 2:12 --nmf_randomize --nmf_method nsNMF \
    --png --force --mpi --verbose

" > ${OUTDIR}/$PIPELINE/$SAMPLE/${SAMPLE}_cluster.sh

qsub ${OUTDIR}/$PIPELINE/$SAMPLE/${SAMPLE}_cluster.sh

done

The .list file simply list input files line by line:

cat all_good_sctransform_spatial.list
../../data/sctransform/standard/LIB-021633rd1/normalize/serialize/LIB-021633rd1_scaled.rds
../../data/sctransform/standard/LIB-021634rd1/normalize/serialize/LIB-021634rd1_scaled.rds
../../data/sctransform/standard/LIB-021635rd1/normalize/serialize/LIB-021635rd1_scaled.rds
../../data/sctransform/standard/LIB-021636rd1/normalize/serialize/LIB-021636rd1_scaled.rds
../../data/sctransform/standard/LIB-021637rd1/normalize/serialize/LIB-021637rd1_scaled.rds

About

Pipeline for SpatialTranscriptomics and 10X Visium data

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages