This is a collection of command line R scripts for analyzing spatial transcriptomics data. It is based on Seurat 3.2 workflows with a focus on multi-sample analyses (technical replicates and treatment/control pairs).
The main purpose of this effort is to implement best practices that can be launched in automated pipelines. It further provides converter functions that make it easier to use methods implemented in different workspaces.
These scripts require Seurat 3.2 or later with Visium support. SpaceRanger 2.0
or later output requires Seurat 4.2 or later. SpaceRanger 3.0 currently
requires the visium-hd
branch from seurat and seurat-object GitHub
repositories.
If you are a conda user, you can find all dependencies available as conda packages in the conda_environment.yml file.
Otherwise install Seurat directly from CRAN:
install.packages("Seurat")
A few optional additional packages extending functionality:
remotes::install_github("satijalab/seurat-wrappers")
remotes::install_github("navinlabcode/CellTrek")
remotes::install_github("dmcable/spacexr", build_vignettes = FALSE)
# following packages not necessary with conda_environment.yml
BiocManager::install(c("batchelor",
"harmony",
"NMF",
"corrplot",
"optparse",
"pheatmap",
"patchwork"))
For the scvi-tools wrapper, we recommend using our conda environment and additionally installing the following packages (using 'mamba' instead of 'conda' should be a major speedup):
conda install pytorch torchvision torchaudio "pytorch-cuda>=11.7" -c pytorch -c nvidia
conda install "jaxlib=*=*cuda*" jax cuda-nvcc -c conda-forge -c nvidia
conda install scvi-tools -c conda-forge
For cell2location, install scvi-tools as above and then install it via pip in the activate conda environment:
pip install cell2location[tutorials]
For Giotto, optionally if you use conda, install a few missing dependencies:
conda install r-terra r-checkmate r-pak r-rfast leidenalg python-louvain -c conda-forge
Then install it via pak in R:
pak::pkg_install("drieslab/Giotto")
Common functionality in this toolkit are provided in an R package called
sttkit
. Install it from GitHub:
remotes::install_github('lima1/sttkit')
Start R and enter the following to get the path to the command line scripts:
system.file("extdata", package = "sttkit")
Exit R and store this path in an environment variable, for example in BASH:
export STTKIT="/path/to/sttkit/extdata"
Rscript $STTKIT/st_normalize.R --help
Usage: /path/to/sttkit/inst/extdata/st_normalize.R [options] ...
A simple script that takes data from the ST pipeline and uses several Seurat features to normalize counts and to generate QC plots.
10X Visium SpaceRanger example:
# spaceranger_dir is the path to filtered_feature_bc_matrix.h5
Rscript $STTKIT/st_normalize.R --spaceranger_dir $SAMPLE/outs \
--sampleid $SAMPLE \
--outprefix OUTDIR/${PIPELINE}/$SAMPLE/normalize/$SAMPLE
We can also additional gene annotation if needed:
# spaceranger_dir is the path to filtered_feature_bc_matrix.h5
Rscript $STTKIT/st_normalize.R --spaceranger_dir $SAMPLE/outs \
--sampleid $SAMPLE \
--outprefix OUTDIR/${PIPELINE}/$SAMPLE/normalize/$SAMPLE \
--gtf $REFERENCES/cellranger/refdata-cellranger-GRCh38-3.0.0/genes/genes.gtf \
--spaceranger_probe_set $REFERENCES/spaceranger-2.1.0/probe_sets/Visium_Human_Transcriptome_Probe_Set_v2.0_GRCh38-2020-A.csv \
The GTF extracts a stable gene id such as ENSEMBL that can be used instead of
the gene name. For FFPE Visium, we can provide probe information. Both can be
accessed in R via the [[]]
operator on the Spatial
assay. In case
SpaceRanger was run without probe filtering, features without included
flag
are ignored in the SCT
assay.
head(ndata$Spatial[[]],2)
gene_id symbol
OR4F5 ENSG00000186092 OR4F5
SAMD11 ENSG00000187634 SAMD11
probe_seqs
OR4F5 AATGGAGAAAGCCAATTCCCCATGTGACAGCCATAATGCCGACACATGCG
SAMD11 TGTCACCATCGCTGGCAGAGAAGCTGGGAGTTCGCTCCTTCTTCAGGTTC|[...]
all.included included regions
OR4F5 FALSE FALSE unspliced
SAMD11 TRUE|TRUE|TRUE TRUE unspliced|unspliced|unspliced
SpatialTranscriptomics example:
PIPELINE="standard"
Rscript $STTKIT/st_snormalize.R --infile $SAMPLE/${PIPELINE}_pipeline/${SAMPLE}_${PIPELINE}_ensembl_adjusted.tsv \
--sampleid $SAMPLE \
--hejpeg {SAMPLE}_HE_bw_scaled.jpg \
--outprefix OUTDIR/${PIPELINE}/$SAMPLE/normalize/$SAMPLE \
This script will generate a few files with --outprefix
as filename prefix.
Note that --hejpeg
is ignored for Visium data.
Cluster the SpatialTranscriptomics data generated by st_normalize.R
Simple single-sample example:
Rscript $STTKIT/st_cluster.R \
--infile $OUTDIR/$SAMPLE/normalize/serialize/${SAMPLE}_scaled.rds \
--outprefix OUTDIR/$SAMPLE/cluster/$SAMPLE
Advanced multi-sample example with NMF clustering:
#! /bin/bash
#$ -S /bin/bash
#$ -pe orte 20 # number of parallel jobs
#$ -N Wtester
#$ -cwd
#$ -j y
#$ -o ${OUTDIR}/${NORMALIZATION_METHOD}/${SAMPLE}/cluster
#$ -l h_rt=345600 #this need to adapted to your needs
#$ -l m_mem_free=4G #this need to adapted to your needs
mpirun --mca mpi_warn_on_fork 0 -v -np \$NSLOTS R --slave \
-f $STTKIT/st_cluster.R --args \
--infile lists/${SAMPLE}_${NORMALIZATION_METHOD}_spatial.list \
--labels lists/${SAMPLE}_labels.list \
--outprefix $OUTDIR/${NORMALIZATION_METHOD}/$SAMPLE/cluster/$SAMPLE \
--gmt ../../signatures/all.gmt \
--extra_gmt ../../signatures/pathways_kegg.gmt \
--min_features $MIN_FEATURES \
--nmf --nmf_rank 4:16 --nmf_nruns \$NSLOTS $NMF_RANDOMIZE --nmf_method nsNMF \
--verbose --mpi
Since NMF clustering is slow, we may need to use the doMPI package to run in in
parallel (provide the --mpi
flag). This example shows that for multi-sample,
we provide --infile
a text file with suffix .list containing multiple input
files. For the non-default seurat2
or scran
normalizations, use the unscaled
${SAMPLE}_unscaled.rds
files to normalize all samples jointly before clustering.
We provide a --gmt
file with signatures of interest to make sure that the
corresponding genes are not filtered out for lower variance than other genes.
Gene signatures in --extra_gmt
are not forced to be included and instead
broadly tested against NMF cluster markers. This is useful for providing large
pathway databases such as KEGG or REACTOME.
We use the nsNMF algorithm instead of the default to get a more sparse solution at the cost of a significantly longer runtime.
Here the results of NMF clustering on the 10X mouse brain example data:
Note that the cluster ids are consistent across sections.
Takes the output of st_cluster.R
and gene signatures in GMT format as input
and plots signature scores (when a clustered RDS was provided, additional
signature per cluster plots will be generated)
Example:
Rscript $STTKIT/st_score.R \
--infile $OUTDIR/$SAMPLE/normalize/serialize/${SAMPLE}_scaled.rds \
--gmt mm10_io_sigs.gmt \
--outprefix OUTDIR/$SAMPLE/signatures/$SAMPLE
Advanced feature: --infile
can be again a list of input files (see
st_cluster.R
). In this case violin plots are generated to compare the
signatures across samples.
Compare Spatial data with bulk RNA-seq.
Example:
Rscript $STTKIT/st_benchmark.R \
--infile $OUTDIR/$SAMPLE/cluster/serialize/${SAMPLE}.rds \
--htseq ${SAMPLE_BULK}.gene_counts.cts \
--outprefix OUTDIR/$SAMPLE/benchmark/$SAMPLE
Advanced feature: both --infile
and --htseq
can be again a list of input
files (see st_cluster.R
).
Integrates SpatialTranscriptomics with a (matched) scRNA reference. The default is simply following the Seurat best practices as outlined in their Spatial Vignette:
Rscript $STTKIT/st_integrate.R \
--infile $OUTDIR/$SAMPLE/cluster/serialize/${SAMPLE}.rds \
--outprefix $OUTDIR/$SAMPLE/integrate/$SAMPLE \
--singlecell allen_cortex.rds \
--labels_singlecell allen_cortex \
--refdata subclass
Here, the reference scRNA-seq dataset is expected to be normalized by
sctransform
and contains cell type annotation in a type
meta data column
(the column can be changed with --refdata
as in this example). Again,
--singlecell
can be a list of reference datasets. Specify
--integration_method rctd
to use RCDT,
--integration_method scvi_destvi
to use DestVI,
--integration_method scvi_cell2location
to use cell2location,
or --integration_method giotto
for SpatialDWLS from
Giotto instead. Output files and plots are
equivalent.
All celltype predictions can be easily loaded in Seurat and compared:
ls $OUTDIR/$SAMPLE/integrate/serialize/*transfer*
LIB-021633rd1_742abcb4d6052d8416d7d7a47d0f6749_giotto_transfer_predictions.rds
LIB-021633rd1_742abcb4d6052d8416d7d7a47d0f6749_rctd_multi_transfer_predictions.rds
LIB-021633rd1_742abcb4d6052d8416d7d7a47d0f6749_scvi_destvi_transfer_predictions.rds
LIB-021633rd1_742abcb4d6052d8416d7d7a47d0f6749_scvi_cell2location_transfer_predictions.rds
LIB-021633rd1_742abcb4d6052d8416d7d7a47d0f6749_seurat_transfer_predictions.rds
In R:
x <- readRDS("cluster/serialize/LIB-021633rd1.rds")
x$predictions <- readRDS("integrate/serialize/LIB-021633rd1_742abcb4d6052d8416d7d7a47d0f6749_rctd_transfer_predictions.rds")
This can now be used following the Seurat best practices.
We also provide a convenient way of averaging prediction in a simple consensus method:
files <- dir("integrate/serialize", pattern = "transfer_predictions.rds",
full.names = TRUE)
tp_consensus <- find_assayobject_consensus(lapply(files, function(x)
readRDS(x)[[1]]), labels = labels, plot_correlations = run_plots,
plot_cor_method = "kendall")
x$predictions <- tp_consensus
We also support the CellTrek package that performs coembedding of the single-cell and spatial data to generate the training model. The single cells are then charted on to their spatial locations using non-linear interpolation to augment the ST spots. This method works especially well when matched single cell and spatial data are available.
We have adapted the same to work using command line inside of sttkit, and also splitting the various cell-types on to separate panels as shown below
Rscript $STTKIT/st_integrate.R \
--infile $OUTDIR/$SAMPLE/cluster/serialize/${SAMPLE}.rds \
--outprefix $OUTDIR/$SAMPLE/celltrek/$SAMPLE \
--singlecell allen_cortex.rds \
--labels_singlecell allen_cortex \
--refdata subclass --png --serialize \
--integration_method celltrek
The CellTrek::celltrek_vis
function uses RShiny to visualize all cell-types
in the mouse brain sample. We can easily load the celltrek
object in R:
cd $OUTDIR/$SAMPLE/celltrek
R
library(CellTrek)
library(dplyr)
options("browser" = "google-chrome")
# The serialized RDS object is a list for cases when multiple
# single cell references were provided
brain_celltrek <- readRDS("serialize/ex_sagittal_a2_celltrek.rds")[[1]]
brain_celltrek$cell_type <- factor(brain_celltrek$cell_type, levels=sort(unique(brain_celltrek$cell_type)))
CellTrek::celltrek_vis([email protected] %>% dplyr::select(coord_x, coord_y, cell_type:id_new),
brain_celltrek@images$ex_sagittal_a2@image, brain_celltrek@[email protected]$lowres)
Now choose cell_type
under "Color" and then click "Plot".
Imputes data from neighboring spots. Currently only BayesSpace supported.
Rscript $STTKIT/st_enhance.R \
--infile $OUTDIR/$SAMPLE/cluster/serialize/${SAMPLE}.rds \
--outprefix $OUTDIR/$SAMPLE/enhance/$SAMPLE \
When the provided --infile
contains SCTransform normalized data, it will
use those log counts. Otherwise BayesSpace's own normalization is used.
Some standard edits to H&E jpegs (obsolete with Visium).
Example:
Rscript $STTKIT/st_hejpeg.R --infile LP_L10012_S085_TGFB_EX2_LIB-026528rd1.jpg \
--outfile LIB-026528rd1_HE_bw_scaled.jpg --dither
In the following we run sttkit
on 5 technical replicates of a breast cancer
sample.
PROJECT="/mnt/tmplabdata/ngdx/projects/dev/spatialTranscriptomics/NGDX-P00273"
PIPELINE="standard"
NORMALIZATION="sctransform"
OUTDIR="../../data/$NORMALIZATION"
MIN_FEATURES=400 # exclude spots with fewer than 400 detected genes
NUM_FEATURES=3000 # aim for including ~3000 genes
MIN_SPOTS=1 # include genes detected in a single spot
mkdir -p $OUTDIR/$PIPELINE
SAMPLES=("LIB-021633rd1" "LIB-021634rd1" "LIB-021635rd1" "LIB-021636rd1" "LIB-021637rd1" )
for SAMPLE in "${SAMPLES[@]}"
do
rm -rf $OUTDIR/$PIPELINE/$SAMPLE
SLIDE="ST_LP_L4_009_02JUN2018_Breast_EX2"
Rscript ~/git/CancerGenetics/ncgs-in-spatial_tools/sttkit/inst/extdata/st_normalize.R \
--infile $PROJECT/$SLIDE/$SAMPLE/${PIPELINE}_pipeline/${SAMPLE}_ensembl_adjusted.tsv \
--outprefix $OUTDIR/${PIPELINE}/$SAMPLE/normalize/$SAMPLE \
--sampleid $SAMPLE \
--hejpeg $PROJECT/$SLIDE/Images/${SAMPLE}_HE_bw_scaled.jpg \
--min_features $MIN_FEATURES \
--min_spots $MIN_SPOTS \
--num_features $NUM_FEATURES \
--normalization_method $NORMALIZATION
Rscript ~/git/CancerGenetics/ncgs-in-spatial_tools/sttkit/inst/extdata/st_cluster.R \
--infile $OUTDIR/$PIPELINE/$SAMPLE/normalize/serialize/${SAMPLE}_scaled.rds \
--outprefix $OUTDIR/$PIPELINE/$SAMPLE/cluster/$SAMPLE
done
# We can specify groups of samples and cluster them together.
#
# In this example, we use all high quality samples and name the group
# "all_good" (I'm very good at naming things...)
#
SAMPLES=("all_good")
for SAMPLE in "${SAMPLES[@]}"
do
rm -rf $OUTDIR/$PIPELINE/$SAMPLE
echo "#! /bin/bash
#$ -S /bin/bash
#$ -pe orte 20 # number or parallel jobs
#$ -N Wtester
#$ -cwd
#$ -j y
#$ -o $OUTDIR/$PIPELINE/${SAMPLE}/cluster
#$ -l h_rt=345600
#$ -l m_mem_free=8G
mpirun --mca mpi_warn_on_fork 0 -v -np \$NSLOTS R --slave \
-f ~/git/CancerGenetics/ncgs-in-spatial_tools/sttkit/inst/extdata/st_cluster.R \
--args --infile lists/${SAMPLE}_${NORMALIZATION}_spatial.list \
--outprefix $OUTDIR/$PIPELINE/${SAMPLE}/cluster/${SAMPLE} \
--nmf --nmf_ranks 2:12 --nmf_randomize --nmf_method nsNMF \
--png --force --mpi --verbose
" > ${OUTDIR}/$PIPELINE/$SAMPLE/${SAMPLE}_cluster.sh
qsub ${OUTDIR}/$PIPELINE/$SAMPLE/${SAMPLE}_cluster.sh
done
The .list file simply list input files line by line:
cat all_good_sctransform_spatial.list
../../data/sctransform/standard/LIB-021633rd1/normalize/serialize/LIB-021633rd1_scaled.rds
../../data/sctransform/standard/LIB-021634rd1/normalize/serialize/LIB-021634rd1_scaled.rds
../../data/sctransform/standard/LIB-021635rd1/normalize/serialize/LIB-021635rd1_scaled.rds
../../data/sctransform/standard/LIB-021636rd1/normalize/serialize/LIB-021636rd1_scaled.rds
../../data/sctransform/standard/LIB-021637rd1/normalize/serialize/LIB-021637rd1_scaled.rds