-
Notifications
You must be signed in to change notification settings - Fork 151
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into fede/sadfactoring-engines
- Loading branch information
Showing
3 changed files
with
162 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
try: | ||
import guidance | ||
except ImportError: | ||
raise ImportError("Please install the guidance package by running `pip install guidance`.") | ||
|
||
import os | ||
import platformdirs | ||
|
||
from .base import EngineLM, CachedEngine | ||
|
||
class GuidanceEngine(EngineLM, CachedEngine): | ||
DEFAULT_SYSTEM_PROMPT = "You are a helpful, creative, and smart assistant." | ||
|
||
def __init__( | ||
self, | ||
model_string="meta-llama/Meta-Llama-3-8B-Instruct", | ||
system_prompt=DEFAULT_SYSTEM_PROMPT, | ||
device="cuda"): | ||
""" | ||
:param model_string: The model identifier for guidance.models | ||
:param system_prompt: The system prompt to use | ||
""" | ||
root = platformdirs.user_cache_dir("textgrad") | ||
cache_path = os.path.join(root, f"cache_guidance_{model_string.replace('/', '_')}.db") | ||
super().__init__(cache_path=cache_path) | ||
|
||
self.system_prompt = system_prompt | ||
self.client = guidance.models.Transformers(model_string, device_map={"": device}) | ||
self.model_string = model_string | ||
|
||
def generate( | ||
self, prompt, system_prompt=None, temperature=0, max_tokens=2000, **kwargs, | ||
): | ||
""" | ||
Generate a response without structured output. | ||
""" | ||
sys_prompt_arg = system_prompt if system_prompt else self.system_prompt | ||
|
||
cache_or_none = self._check_cache(sys_prompt_arg + prompt) | ||
if cache_or_none is not None: | ||
return cache_or_none | ||
|
||
lm = self.client | ||
with guidance.system(): | ||
lm += sys_prompt_arg | ||
with guidance.user(): | ||
lm += prompt | ||
with guidance.assistant(): | ||
lm += guidance.gen(name="response", max_tokens=max_tokens, temperature=temperature) | ||
|
||
response_text = lm["response"] | ||
|
||
self._save_cache(sys_prompt_arg + prompt, response_text) | ||
self.client.reset() | ||
return response_text | ||
|
||
def generate_structured(self, guidance_structure, **kwargs): | ||
""" | ||
Generate a response using a provided guidance structure. | ||
:param guidance_structure: A guidance-decorated function defining the structure | ||
:param kwargs: Additional keyword arguments to pass to the guidance structure | ||
""" | ||
# TODO: Check if the provided function is decorated with guidance. | ||
self.client += guidance_structure(**kwargs) | ||
output_variables = self.client._variables | ||
self.client.reset() | ||
return output_variables | ||
|
||
def __call__(self, prompt, **kwargs): | ||
return self.generate(prompt, **kwargs) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
from abc import ABC, abstractmethod | ||
from typing import List, Union | ||
from collections import defaultdict | ||
from textgrad.variable import Variable | ||
from textgrad import logger | ||
from textgrad.engine import EngineLM | ||
from textgrad.config import validate_engine_or_get_default | ||
from .optimizer_prompts import construct_tgd_prompt, OPTIMIZER_SYSTEM_PROMPT, GRADIENT_TEMPLATE, GRADIENT_MULTIPART_TEMPLATE | ||
from .optimizer import TextualGradientDescent, Optimizer, get_gradient_and_context_text | ||
try: | ||
from guidance import models, gen | ||
import guidance | ||
except ImportError: | ||
raise ImportError( | ||
"If you'd like to use guided optimization with guidance, please install the package by running `pip install guidance`." | ||
) | ||
|
||
|
||
from textgrad.engine.guidance import GuidanceEngine | ||
|
||
|
||
class GuidedTextualGradientDescent(TextualGradientDescent): | ||
def __init__(self, | ||
parameters: List[Variable], | ||
verbose: int=0, | ||
engine: Union[GuidanceEngine, str]=None, | ||
constraints: List[str]=None, | ||
new_variable_tags: List[str]=None, | ||
optimizer_system_prompt: str=OPTIMIZER_SYSTEM_PROMPT, | ||
in_context_examples: List[str]=None, | ||
gradient_memory: int=0): | ||
"""GuidedTextualGradientDescent optimizer | ||
:param engine: the engine to use for updating variables | ||
:type engine: EngineLM | ||
:param parameters: the parameters to optimize | ||
:type parameters: List[Variable] | ||
:param verbose: whether to print iterations, defaults to 0 | ||
:type verbose: int, optional | ||
:param constraints: a list of natural language constraints, defaults to [] | ||
:type constraints: List[str], optional | ||
:param optimizer_system_prompt: system prompt to the optimizer, defaults to textgrad.prompts.OPTIMIZER_SYSTEM_PROMPT. Needs to accept new_variable_start_tag and new_variable_end_tag | ||
:type optimizer_system_prompt: str, optional | ||
:param in_context_examples: a list of in-context examples, defaults to [] | ||
:type in_context_examples: List[str], optional | ||
:param gradient_memory: the number of past gradients to store, defaults to 0 | ||
:type gradient_memory: int, optional | ||
""" | ||
super().__init__(parameters, engine=engine, verbose=verbose, constraints=constraints, new_variable_tags=new_variable_tags, optimizer_system_prompt=optimizer_system_prompt, in_context_examples=in_context_examples, gradient_memory=gradient_memory) | ||
assert isinstance(self.engine, GuidanceEngine), "GuidedTextualGradientDescent optimizer requires a GuidanceEngine engine. Got: {}".format(self.engine) | ||
|
||
def step(self): | ||
""" | ||
Perform a single optimization step. | ||
This method updates the parameters of the optimizer by generating new text using the engine and updating the parameter values accordingly. | ||
It also logs the optimizer response and the updated text. | ||
Returns: | ||
None | ||
""" | ||
for parameter in self.parameters: | ||
prompt_update_parameter = self._update_prompt(parameter) | ||
# Change the below with the guidance function | ||
@guidance | ||
def structured_tgd_response(lm, | ||
tgd_prompt: str=prompt_update_parameter, | ||
system_prompt: str=self.optimizer_system_prompt, | ||
new_variable_tags: List[str]=self.new_variable_tags, | ||
max_reasoning_tokens: int=1024, | ||
max_variable_tokens: int=4096): | ||
with guidance.system(): | ||
lm += system_prompt | ||
with guidance.user(): | ||
lm += tgd_prompt | ||
with guidance.assistant(): | ||
lm += "Reasoning: " + gen(name="reasoning", stop="\n", max_tokens=max_reasoning_tokens) + "\n" | ||
lm += new_variable_tags[0] + gen(name="improved_variable", stop=new_variable_tags[1], max_tokens=max_variable_tokens) + new_variable_tags[1] | ||
return lm | ||
structured_response = self.engine.generate_structured(structured_tgd_response, tgd_prompt=prompt_update_parameter) | ||
new_value = structured_response["improved_variable"] | ||
logger.info(f"GuidedTextualGradientDescent output variables", extra={"optimizer.response": structured_response}) | ||
logger.info(f"GuidedTextualGradientDescent optimizer response", extra={"optimizer.response": new_value}) | ||
parameter.set_value(new_value) | ||
logger.info(f"GuidedTextualGradientDescent updated text", extra={"parameter.value": parameter.value}) | ||
if self.verbose: | ||
print("-----------------------GuidedTextualGradientDescent------------------------") | ||
print(parameter.value) | ||
|
||
if self.do_gradient_memory: | ||
self.update_gradient_memory(parameter) |