forked from ygx2011/MVision
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
164 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,164 @@ | ||
# --- | ||
# Fichero descargado de https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/g3doc/tutorials/mnist/input_data.py | ||
# --- | ||
# Copyright 2015 Google Inc. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
"""Functions for downloading and reading MNIST data.""" | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
import gzip | ||
import os | ||
import numpy | ||
from six.moves import urllib | ||
from six.moves import xrange # pylint: disable=redefined-builtin | ||
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' | ||
def maybe_download(filename, work_directory): | ||
"""Download the data from Yann's website, unless it's already here.""" | ||
if not os.path.exists(work_directory): | ||
os.mkdir(work_directory) | ||
filepath = os.path.join(work_directory, filename) | ||
if not os.path.exists(filepath): | ||
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) | ||
statinfo = os.stat(filepath) | ||
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.') | ||
return filepath | ||
def _read32(bytestream): | ||
dt = numpy.dtype(numpy.uint32).newbyteorder('>') | ||
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] | ||
def extract_images(filename): | ||
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" | ||
print('Extracting', filename) | ||
with gzip.open(filename) as bytestream: | ||
magic = _read32(bytestream) | ||
if magic != 2051: | ||
raise ValueError( | ||
'Invalid magic number %d in MNIST image file: %s' % | ||
(magic, filename)) | ||
num_images = _read32(bytestream) | ||
rows = _read32(bytestream) | ||
cols = _read32(bytestream) | ||
buf = bytestream.read(rows * cols * num_images) | ||
data = numpy.frombuffer(buf, dtype=numpy.uint8) | ||
data = data.reshape(num_images, rows, cols, 1) | ||
return data | ||
def dense_to_one_hot(labels_dense, num_classes=10): | ||
"""Convert class labels from scalars to one-hot vectors.""" | ||
num_labels = labels_dense.shape[0] | ||
index_offset = numpy.arange(num_labels) * num_classes | ||
labels_one_hot = numpy.zeros((num_labels, num_classes)) | ||
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 | ||
return labels_one_hot | ||
def extract_labels(filename, one_hot=False): | ||
"""Extract the labels into a 1D uint8 numpy array [index].""" | ||
print('Extracting', filename) | ||
with gzip.open(filename) as bytestream: | ||
magic = _read32(bytestream) | ||
if magic != 2049: | ||
raise ValueError( | ||
'Invalid magic number %d in MNIST label file: %s' % | ||
(magic, filename)) | ||
num_items = _read32(bytestream) | ||
buf = bytestream.read(num_items) | ||
labels = numpy.frombuffer(buf, dtype=numpy.uint8) | ||
if one_hot: | ||
return dense_to_one_hot(labels) | ||
return labels | ||
class DataSet(object): | ||
def __init__(self, images, labels, fake_data=False): | ||
if fake_data: | ||
self._num_examples = 10000 | ||
else: | ||
assert images.shape[0] == labels.shape[0], ( | ||
"images.shape: %s labels.shape: %s" % (images.shape, | ||
labels.shape)) | ||
self._num_examples = images.shape[0] | ||
# Convert shape from [num examples, rows, columns, depth] | ||
# to [num examples, rows*columns] (assuming depth == 1) | ||
assert images.shape[3] == 1 | ||
images = images.reshape(images.shape[0], | ||
images.shape[1] * images.shape[2]) | ||
# Convert from [0, 255] -> [0.0, 1.0]. | ||
images = images.astype(numpy.float32) | ||
images = numpy.multiply(images, 1.0 / 255.0) | ||
self._images = images | ||
self._labels = labels | ||
self._epochs_completed = 0 | ||
self._index_in_epoch = 0 | ||
@property | ||
def images(self): | ||
return self._images | ||
@property | ||
def labels(self): | ||
return self._labels | ||
@property | ||
def num_examples(self): | ||
return self._num_examples | ||
@property | ||
def epochs_completed(self): | ||
return self._epochs_completed | ||
def next_batch(self, batch_size, fake_data=False): | ||
"""Return the next `batch_size` examples from this data set.""" | ||
if fake_data: | ||
fake_image = [1.0 for _ in xrange(784)] | ||
fake_label = 0 | ||
return [fake_image for _ in xrange(batch_size)], [ | ||
fake_label for _ in xrange(batch_size)] | ||
start = self._index_in_epoch | ||
self._index_in_epoch += batch_size | ||
if self._index_in_epoch > self._num_examples: | ||
# Finished epoch | ||
self._epochs_completed += 1 | ||
# Shuffle the data | ||
perm = numpy.arange(self._num_examples) | ||
numpy.random.shuffle(perm) | ||
self._images = self._images[perm] | ||
self._labels = self._labels[perm] | ||
# Start next epoch | ||
start = 0 | ||
self._index_in_epoch = batch_size | ||
assert batch_size <= self._num_examples | ||
end = self._index_in_epoch | ||
return self._images[start:end], self._labels[start:end] | ||
def read_data_sets(train_dir, fake_data=False, one_hot=False): | ||
class DataSets(object): | ||
pass | ||
data_sets = DataSets() | ||
if fake_data: | ||
data_sets.train = DataSet([], [], fake_data=True) | ||
data_sets.validation = DataSet([], [], fake_data=True) | ||
data_sets.test = DataSet([], [], fake_data=True) | ||
return data_sets | ||
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' | ||
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' | ||
TEST_IMAGES = 't10k-images-idx3-ubyte.gz' | ||
TEST_LABELS = 't10k-labels-idx1-ubyte.gz' | ||
VALIDATION_SIZE = 5000 | ||
local_file = maybe_download(TRAIN_IMAGES, train_dir) | ||
train_images = extract_images(local_file) | ||
local_file = maybe_download(TRAIN_LABELS, train_dir) | ||
train_labels = extract_labels(local_file, one_hot=one_hot) | ||
local_file = maybe_download(TEST_IMAGES, train_dir) | ||
test_images = extract_images(local_file) | ||
local_file = maybe_download(TEST_LABELS, train_dir) | ||
test_labels = extract_labels(local_file, one_hot=one_hot) | ||
validation_images = train_images[:VALIDATION_SIZE] | ||
validation_labels = train_labels[:VALIDATION_SIZE] | ||
train_images = train_images[VALIDATION_SIZE:] | ||
train_labels = train_labels[VALIDATION_SIZE:] | ||
data_sets.train = DataSet(train_images, train_labels) | ||
data_sets.validation = DataSet(validation_images, validation_labels) | ||
data_sets.test = DataSet(test_images, test_labels) | ||
return data_sets |