forked from ygx2011/MVision
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
157 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
""" | ||
Restricted Boltzmann Machines (RBM) | ||
author: Ye Hu | ||
2016/12/18 | ||
redit:wanyouwen 2018/05/02 | ||
""" | ||
import os | ||
import timeit | ||
import numpy as np | ||
import tensorflow as tf | ||
from PIL import Image | ||
from utils import tile_raster_images | ||
import input_data | ||
from rbm import RBM | ||
|
||
|
||
class GBRBM(RBM): | ||
""" | ||
Gaussian-binary Restricted Boltzmann Machines | ||
Note we assume that the standard deviation is a constant (not training parameter) | ||
You better normalize you data with range of [0, 1.0]. | ||
""" | ||
def __init__(self, inpt=None, n_visiable=784, n_hidden=500, sigma=1.0, W=None, | ||
hbias=None, vbias=None, sample_visible=True): | ||
""" | ||
:param inpt: Tensor, the input tensor [None, n_visiable] | ||
:param n_visiable: int, number of visiable units | ||
:param n_hidden: int, number of hidden units | ||
:param sigma: float, the standard deviation (note we use the same σ for all visible units) | ||
:param W, hbias, vbias: Tensor, the parameters of RBM (tf.Variable) | ||
:param sample_visble: bool, if True, do gaussian sampling. | ||
""" | ||
super(GBRBM, self).__init__(inpt, n_visiable, n_hidden, W, hbias, vbias) | ||
self.sigma = sigma | ||
self.sample_visible = sample_visible | ||
|
||
@staticmethod | ||
def sample_gaussian(x, sigma): | ||
return x + tf.random_normal(tf.shape(x), mean=0.0, stddev=sigma) | ||
|
||
def propdown(self, h): | ||
"""Compute the mean for visible units given hidden units""" | ||
return tf.matmul(h, tf.transpose(self.W)) + self.vbias | ||
|
||
def sample_v_given_h(self, h0_sample): | ||
"""Sampling the visiable units given hidden sample""" | ||
v1_mean = self.propdown(h0_sample) | ||
v1_sample = v1_mean | ||
if self.sample_visible: | ||
v1_sample = GBRBM.sample_gaussian(v1_mean, self.sigma) | ||
return (v1_mean, v1_sample) | ||
|
||
def propup(self, v): | ||
"""Compute the sigmoid activation for hidden units given visible units""" | ||
return tf.nn.sigmoid(tf.matmul(v, self.W) / self.sigma**2 + self.hbias) | ||
|
||
def free_energy(self, v_sample): | ||
"""Compute the free energy""" | ||
wx_b = tf.matmul(v_sample, self.W) / self.sigma**2 + self.hbias | ||
vbias_term = tf.reduce_sum(0.5 * tf.square(v_sample - self.vbias) / self.sigma**2, axis=1) | ||
hidden_term = tf.reduce_sum(tf.log(1.0 + tf.exp(wx_b)), axis=1) | ||
return -hidden_term + vbias_term | ||
|
||
def get_reconstruction_cost(self): | ||
"""Compute the mse of the original input and the reconstruction""" | ||
activation_h = self.propup(self.input) | ||
activation_v = self.propdown(activation_h) | ||
mse = tf.reduce_mean(tf.reduce_sum(tf.square(self.input - activation_v), axis=1)) | ||
return mse | ||
|
||
|
||
|
||
if __name__ == "__main__": | ||
# mnist examples | ||
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | ||
# define input | ||
x = tf.placeholder(tf.float32, shape=[None, 784]) | ||
# set random_seed | ||
tf.set_random_seed(seed=99999) | ||
np.random.seed(123) | ||
# the rbm model | ||
n_visiable, n_hidden = 784, 500 | ||
rbm = GBRBM(x, n_visiable=n_visiable, n_hidden=n_hidden) | ||
|
||
learning_rate = 0.01 | ||
batch_size = 50 | ||
cost = rbm.get_reconstruction_cost() | ||
# Create the persistent variable | ||
#persistent_chain = tf.Variable(tf.zeros([batch_size, n_hidden]), dtype=tf.float32) | ||
persistent_chain = None | ||
train_ops = rbm.get_train_ops(learning_rate=learning_rate, k=1, persistent=persistent_chain) | ||
init = tf.global_variables_initializer() | ||
|
||
output_folder = "rbm_plots" | ||
if not os.path.isdir(output_folder): | ||
os.makedirs(output_folder) | ||
os.chdir(output_folder) | ||
|
||
training_epochs = 15 | ||
display_step = 1 | ||
print("Start training...") | ||
|
||
with tf.Session() as sess: | ||
start_time = timeit.default_timer() | ||
sess.run(init) | ||
for epoch in range(training_epochs): | ||
avg_cost = 0.0 | ||
batch_num = int(mnist.train.num_examples / batch_size) | ||
for i in range(batch_num): | ||
x_batch, _ = mnist.train.next_batch(batch_size) | ||
# 训练 | ||
sess.run(train_ops, feed_dict={x: x_batch}) | ||
# 计算cost | ||
avg_cost += sess.run(cost, feed_dict={x: x_batch,}) / batch_num | ||
# 输出 | ||
if epoch % display_step == 0: | ||
print("Epoch {0} cost: {1}".format(epoch, avg_cost)) | ||
# Construct image from the weight matrix | ||
image = Image.fromarray( | ||
tile_raster_images( | ||
X=sess.run(tf.transpose(rbm.W)), | ||
img_shape=(28, 28), | ||
tile_shape=(10, 10), | ||
tile_spacing=(1, 1))) | ||
image.save("test_filters_at_epoch_{0}.png".format(epoch)) | ||
|
||
end_time = timeit.default_timer() | ||
training_time = end_time - start_time | ||
print("Finished!") | ||
print(" The training ran for {0} minutes.".format(training_time/60,)) | ||
|
||
# Randomly select the 'n_chains' examples | ||
n_chains = 20 | ||
n_batch = 10 | ||
n_samples = n_batch*2 | ||
number_test_examples = mnist.test.num_examples | ||
test_indexs = np.random.randint(number_test_examples - n_chains*n_batch) | ||
test_samples = mnist.test.images[test_indexs:test_indexs+n_chains*n_batch] | ||
image_data = np.zeros((29*(n_samples+1)+1, 29*(n_chains)-1), | ||
dtype="uint8") | ||
# Add the original images | ||
for i in range(n_batch): | ||
image_data[2*i*29:2*i*29+28,:] = tile_raster_images(X=test_samples[i*n_batch:(i+1)*n_chains], | ||
img_shape=(28, 28), | ||
tile_shape=(1, n_chains), | ||
tile_spacing=(1, 1)) | ||
samples = sess.run(rbm.reconstruct(x), feed_dict={x:test_samples[i*n_batch:(i+1)*n_chains]}) | ||
image_data[(2*i+1)*29:(2*i+1)*29+28,:] = tile_raster_images(X=samples, | ||
img_shape=(28, 28), | ||
tile_shape=(1, n_chains), | ||
tile_spacing=(1, 1)) | ||
|
||
image = Image.fromarray(image_data) | ||
image.save("original_and_reconstruct.png") | ||
|
||
|
||
|