forked from ygx2011/MVision
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
165 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
""" | ||
Convolution neural network | ||
author: Ye Hu | ||
2016/12/15 | ||
redit:wanyouwen 2018/05/02 | ||
""" | ||
import numpy as np | ||
import tensorflow as tf | ||
import input_data | ||
from logisticRegression import LogisticRegression | ||
from mlp import HiddenLayer | ||
|
||
class ConvLayer(object): | ||
""" | ||
A convolution layer | ||
""" | ||
def __init__(self, inpt, filter_shape, strides=(1, 1, 1, 1), | ||
padding="SAME", activation=tf.nn.relu, bias_setting=True): | ||
""" | ||
inpt: tf.Tensor, shape [n_examples, witdth, height, channels] | ||
filter_shape: list or tuple, [witdth, height. channels, filter_nums] | ||
strides: list or tuple, the step of filter | ||
padding: | ||
activation: | ||
bias_setting: | ||
""" | ||
self.input = inpt | ||
# initializes the filter | ||
self.W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), dtype=tf.float32) | ||
if bias_setting: | ||
self.b = tf.Variable(tf.truncated_normal(filter_shape[-1:], stddev=0.1), | ||
dtype=tf.float32) | ||
else: | ||
self.b = None | ||
conv_output = tf.nn.conv2d(self.input, filter=self.W, strides=strides, | ||
padding=padding) | ||
conv_output = conv_output + self.b if self.b is not None else conv_output | ||
# the output | ||
self.output = conv_output if activation is None else activation(conv_output) | ||
# the params | ||
self.params = [self.W, self.b] if self.b is not None else [self.W, ] | ||
|
||
|
||
class MaxPoolLayer(object): | ||
"""pool layer""" | ||
def __init__(self, inpt, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding="SAME"): | ||
""" | ||
""" | ||
self.input = inpt | ||
# the output | ||
self.output = tf.nn.max_pool(self.input, ksize=ksize, strides=strides, padding=padding) | ||
self.params = [] | ||
|
||
|
||
class FlattenLayer(object): | ||
"""Flatten layer""" | ||
def __init__(self, inpt, shape): | ||
self.input = inpt | ||
self.output = tf.reshape(self.input, shape=shape) | ||
self.params = [] | ||
|
||
class DropoutLayer(object): | ||
"""Dropout layer""" | ||
def __init__(self, inpt, keep_prob): | ||
""" | ||
keep_prob: float (0, 1] | ||
""" | ||
self.keep_prob = tf.placeholder(tf.float32) | ||
self.input = inpt | ||
self.output = tf.nn.dropout(self.input, keep_prob=self.keep_prob) | ||
self.train_dicts = {self.keep_prob: keep_prob} | ||
self.pred_dicts = {self.keep_prob: 1.0} | ||
|
||
if __name__ == "__main__": | ||
# mnist examples | ||
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | ||
# define input and output placehoders | ||
x = tf.placeholder(tf.float32, shape=[None, 784]) | ||
y_ = tf.placeholder(tf.float32, shape=[None, 10]) | ||
# reshape | ||
inpt = tf.reshape(x, shape=[-1, 28, 28, 1]) | ||
|
||
# create network | ||
# params for training | ||
# conv and pool layer0 | ||
layer0_conv = ConvLayer(inpt, filter_shape=[5, 5, 1, 32], strides=[1, 1, 1, 1], activation=tf.nn.relu, | ||
padding="SAME") # [?, 28, 28, 32] | ||
layer0_pool = MaxPoolLayer(layer0_conv.output, ksize=[1, 2, 2, 1], | ||
strides=[1, 2, 2, 1]) # [?, 14, 14, 32] | ||
# conv and pool layer1 | ||
layer1_conv = ConvLayer(layer0_pool.output, filter_shape=[5, 5, 32, 64], strides=[1, 1, 1, 1], | ||
activation=tf.nn.relu, padding="SAME") # [?, 14, 14, 64] | ||
layer1_pool = MaxPoolLayer(layer1_conv.output, ksize=[1, 2, 2, 1], | ||
strides=[1, 2, 2, 1]) # [?, 7, 7, 64] | ||
# flatten layer | ||
layer2_flatten = FlattenLayer(layer1_pool.output, shape=[-1, 7*7*64]) | ||
# fully-connected layer | ||
layer3_fullyconn = HiddenLayer(layer2_flatten.output, n_in=7*7*64, n_out=256, activation=tf.nn.relu) | ||
# dropout layer | ||
layer3_dropout = DropoutLayer(layer3_fullyconn.output, keep_prob=0.5) | ||
# the output layer | ||
layer4_output = LogisticRegression(layer3_dropout.output, n_in=256, n_out=10) | ||
|
||
# params for training | ||
params = layer0_conv.params + layer1_conv.params + layer3_fullyconn.params + layer4_output.params | ||
# train dicts for dropout | ||
train_dicts = layer3_dropout.train_dicts | ||
# prediction dicts for dropout | ||
pred_dicts = layer3_dropout.pred_dicts | ||
|
||
# get cost | ||
cost = layer4_output.cost(y_) | ||
# accuracy | ||
accuracy = layer4_output.accuarcy(y_) | ||
predictor = layer4_output.y_pred | ||
# 定义训练器 | ||
train_op = tf.train.AdamOptimizer(learning_rate=0.0001).minimize( | ||
cost, var_list=params) | ||
|
||
# 初始化所有变量 | ||
init = tf.global_variables_initializer() | ||
|
||
# 定义训练参数 | ||
training_epochs = 10 | ||
batch_size = 100 | ||
display_step = 1 | ||
|
||
# 开始训练 | ||
print("Start to train...") | ||
with tf.Session() as sess: | ||
sess.run(init) | ||
for epoch in range(training_epochs): | ||
avg_cost = 0.0 | ||
batch_num = int(mnist.train.num_examples / batch_size) | ||
for i in range(batch_num): | ||
x_batch, y_batch = mnist.train.next_batch(batch_size) | ||
# 训练 | ||
train_dicts.update({x: x_batch, y_: y_batch}) | ||
|
||
sess.run(train_op, feed_dict=train_dicts) | ||
# 计算cost | ||
pred_dicts.update({x: x_batch, y_: y_batch}) | ||
avg_cost += sess.run(cost, feed_dict=pred_dicts) / batch_num | ||
# 输出 | ||
if epoch % display_step == 0: | ||
pred_dicts.update({x: mnist.validation.images, | ||
y_: mnist.validation.labels}) | ||
val_acc = sess.run(accuracy, feed_dict=pred_dicts) | ||
print("Epoch {0} cost: {1}, validation accuacy: {2}".format(epoch, | ||
avg_cost, val_acc)) | ||
|
||
print("Finished!") | ||
test_x = mnist.test.images[:10] | ||
test_y = mnist.test.labels[:10] | ||
print("Ture lables:") | ||
print(" ", np.argmax(test_y, 1)) | ||
print("Prediction:") | ||
pred_dicts.update({x: test_x}) | ||
print(" ", sess.run(predictor, feed_dict=pred_dicts)) | ||
tf.scan() | ||
|
||
|
||
|
||
|
||
|