Skip to content

Commit

Permalink
Create 01_logisticRegression.py
Browse files Browse the repository at this point in the history
  • Loading branch information
Ewenwan authored May 2, 2018
1 parent 407b574 commit 1664516
Showing 1 changed file with 96 additions and 0 deletions.
96 changes: 96 additions & 0 deletions deepLearning/01_logisticRegression.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
"""
Logistic Regression
author: Ye Hu
2016/12/14 update 2017/02/16
redit:wanyouwen 2018/05/02
"""
import numpy as np
import tensorflow as tf
import input_data

class LogisticRegression(object):
"""Multi-class logistic regression class"""
def __init__(self, inpt, n_in, n_out):
"""
inpt: tf.Tensor, (one minibatch) [None, n_in]
n_in: int, number of input units
n_out: int, number of output units
"""
# weight
self.W = tf.Variable(tf.zeros([n_in, n_out], dtype=tf.float32))
# bias
self.b = tf.Variable(tf.zeros([n_out,]), dtype=tf.float32)
# activation output
self.output = tf.nn.softmax(tf.matmul(inpt, self.W) + self.b)
# prediction
self.y_pred = tf.argmax(self.output, axis=1)
# keep track of variables
self.params = [self.W, self.b]

def cost(self, y):
"""
y: tf.Tensor, the target of the input
"""
# cross_entropy
return -tf.reduce_mean(tf.reduce_sum(y * tf.log(self.output), axis=1))

def accuarcy(self, y):
"""errors"""
correct_pred = tf.equal(self.y_pred, tf.argmax(y, axis=1))
return tf.reduce_mean(tf.cast(correct_pred, tf.float32))




if __name__ == "__main__":
# Load mnist dataset
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Define placeholder for input and target
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])

# Construct model
classifier = LogisticRegression(x, n_in=784, n_out=10)
cost = classifier.cost(y_)
accuracy = classifier.accuarcy(y_)
predictor = classifier.y_pred
# Define the train operation
train_op = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(
cost, var_list=classifier.params)

# Initialize all variables
init = tf.global_variables_initializer()

# Training settings
training_epochs = 50
batch_size = 100
display_step = 5

# Train loop
print("Start to train...")
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
avg_cost = 0.0
batch_num = int(mnist.train.num_examples/batch_size)
for i in range(batch_num):
x_batch, y_batch = mnist.train.next_batch(batch_size)
# Run train op
c, _ = sess.run([cost, train_op], feed_dict={x: x_batch, y_: y_batch})
# Sum up cost
avg_cost += c/batch_num

if epoch % display_step == 0:
val_acc = sess.run(accuracy, feed_dict={x: mnist.validation.images,
y_: mnist.validation.labels})
print("Epoch {0} cost: {1}, validation accuacy: {2}".format(epoch,
avg_cost, val_acc))

print("Finished!")
test_x = mnist.test.images[:10]
test_y = mnist.test.labels[:10]
print("Ture lables:")
print(" ", np.argmax(test_y, 1))
print("Prediction:")
print(" ", sess.run(predictor, feed_dict={x: test_x}))

0 comments on commit 1664516

Please sign in to comment.